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Lecture 2: Minimax Theorems

Lunjia Hu

Consider the following basic game between two players Alice and Bob. In this game, Alice
chooses an action a from a set A, and Bob chooses an action b from another set B. The result of
the game is determined by a function f : A x B — R: Alice gets f(a,b) points whereas Bob gets
—f(a,b) points. Note that f(a,b) could be positive, zero, or negative, depending on the choices
of both players’ actions a and b. Since the points of the two players sum to zero, such games are
termed zero-sum games.

Both players hope to maximize their points. Alice’s goal is to choose an action a € A that
maximizes f(a,b), whereas Bob’s goal is to choose b € B that minimizes f(a,b).

A special case of a zero-sum game is the “rock paper scissors” game. The fairness of the game
depends crucially on the rule that both players should play synchronously. Indeed, if they play
sequentially, the second player has an advantage of knowing the first players’s action, whereas the
first player has to choose their action without knowing the second player’s action. This advantage
can be quantified as follows.

Assume both players play optimally. When Alice plays first and Bob plays second, Alice will
get the following pointsﬂ
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When Bob plays first and Alice plays second, Alice will get the following points:
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The advantage of playing second is
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Roughly speaking, the minimax theorem states that under certain convexity and regularity
conditions on A, B and f, playing second has no advantage:

ax mi b) = min ma; b).
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The minimax theorem is a central result in game theory. It has the following interpretation that is
very useful in various applications in computer science:

*https://lunjiahu.com/convex-analysis/
!We assume that the max and min can be attained in this introductory part of the notes. We will not make such
implicit assumptions in the technical part later, where we use sup and inf instead.


https://lunjiahu.com/convex-analysis/

If Alice can ensure f(a,b) >t when she plays second, then she can ensure f(a,b) >t
even when she plays first.

This is useful in computer science because one can think of Alice’s action as an algorithm and
Bob’s action as an input. We view f(a,b) as the performance of algorithm a on input b. Usually,
we’d like to design an algorithm a that performs well on every input b. That is, we want to ensure
f(a,b) >t for some threshold ¢t when Alice plays the algorithm a first. To achieve this goal, if the
minimax theorem holds, we just need to ensure f(a,b) > ¢t when Alice plays second: for every fized
input b, we aim to find an algorithm a with good performance. This often becomes much easier
than directly finding a single, universal algorithm a that performs well for every input b.

We will prove the minimax theorem using the hyperplane separation theorem. While the con-
nection between the two theorems may appear elusive at first, it is not surprising given that they
are both instances of the following statement:

If something doesn’t exist, then something else must exist.
Indeed, the minimax theorem can be viewed as the following statement:

If Bob cannot ensure f(a,b) <t when he plays first, then Alice can ensure f(a,b) >t
when she plays first.

1 Dual Cone and Polar Cone

Definition 1. We say K C R? is a cone if for every x € K and every X > 0, it holds that A\ € K.
Definition 2 (Dual set and polar set). For any S C R?, its dual S* is defined to be
S* = {z* € RY: (x,2%) > 0 for every z € S}.
The polar S° of S is defined to be
5° = —(8%) = {z* e RY: (z,2%) <0 for every z € S}.
Lemma 1. The dual and polar of every set S C R% are non-empty closed convex cones.
Theorem 2. Let K be a non-empty closed convex cone. Then (K*)* = (K°)° =K.

Proof. We first show that K C (K*)*. Consider any x € K. By the definition of K*, every z* € K*
satisfies (z,2*) > 0. This means that x € (K™*)*.

Now we show that (K*)* C K. Consider any y € R?\ K. Our goal is to show y ¢ (K*)*. Since
K is a closed convex set, by the hyperplane separation theorem, there exists h € R? such that

(x,h) > (y,h) forevery z € K.
Since K is a non-empty closed cone (which must contain the origin), the above inequality implies
(x,h) > 0> (y,h) forevery z € K.

This implies that h € K* and y ¢ (K*)*, as desired.
We have now proved (K*)* = K. It remains to prove (K°)° = (K*)*. This holds because
K° = —(K*) and (K°)° = —(—(K*))* = (K*)*. O



2 Minimax Theorem for Inner Products

When f(a,b) can be expressed as the inner product between Alice’s action a and Bob’s action b,
we have the following fundamental minimax theorem:

Theorem 3. Let A, B C R? be convex sets. Assume that A is non-empty and compact. Then

sup inf (a, b) = inf sup{a,b).
aegb€B< 0) bGBaeE< )

Before we prove the theorem, we first remark that one direction of the theorem is trivial:
Lemma 4. Let A, B be arbitrary sets and let f: A x B — R be an arbitrary function. Then

sup mf f(a,b) < mf sup f(a,b).
acAb

Proof. It suffices to show that for every ag € A and by € B,
inf f(ao,b) <:SUI)f(a bo).
beB

acA
This is true because infyep f(ao,b) < f(ag,bo) < sup,ecq f(a, bo). O

Proof of Theorem[3. By Lemma[4] it suffices to prove the reverse inequality

sup 1nf<a, b) > 1nf sup(a b).
acAbeEB

Define t := infpe g sup,c 4(a,b) € RU {%o0}. For every b € B, we have sup,c4(a,b) > t. This can
be interpreted as “Bob cannot ensure (a,b) < t when he plays first”. Therefore, for every b € B
and every t' < t, there exists a € A such that

{a,by >t/

Define K := {\(a,—1) : A > 0,a € A} C R™! and S := {(b,t') : b € B,t' <t} C R*!. Our
assumption that A is a non-empty compact convex set ensures that K is a non-empty closed convex
cone.

Now for every s € S, there exists k € K such that

(k,s) >0

This means that SN K° = (). By the hyperplane separation theorem, there exists a non-zero vector
h € R such that
(h,s) > (h,k°) for every s € S and k° € K°.

By Lemma l} K° is a non-empty closed convex cone (which must contain the origin), so the above
inequality implies

>0 forevery se S,
(h,k°) <0 for every k° € K°.

The second inequality implies h € (K°)°, and by Theorem 2/ we have h € K. By the definition of
K and the fact that A # 0, there exists a € A and A > 0 such that h = A(a,—1). Plugging this
into the first inequality above and using the definition of .S, we have

(a,b) >t for every b € B.

This proves that sup,c 4 infpep(a,b) > t, as desired. ]



Remark 1. The compactness assumption on A is necessary. Consider A;B C R? such that
A= {(z, )}, B = {(L,y)}. Then

sup inf (a,b) = —oco,  but
acAbEB

inf sup(a, b) = 4o0.

beBa€§< /b
There is also an example where both quantities are finite but different. Suppose A consists of
points a = (x1,x2,0,29 + 1) for z1,29 € R, and B consists of points b = (y1,y2,y3,ys — 1), where

[yl yﬂ =0 and ys > 0. We have
Y2 Y3

(a,b) = z1y1 + x2y2 + (w2 + 1)(ya — 1).

Whenever xo # 0, we have

inf = —o0.
AR

Therefore,
sup inf (a,b) = sup inf{a,b) = —1.
acA b€B< > a€A:xo=0 bEB< >

Similarly, if y1 £ 0 or ya +yq # 1, we have

sup(a, b) = +00.
acA

Moreover, y1 = 0 implies yo = 0. Therefore,

inf sup(a,b) = inf sup(a, b) = 0.
beEB gcA beB:y1=y2=0,y4=1 yc A

3 Minimax Theorem for Two-Player Zero-Sum Games

Theorem |3| has many specific requirements on the action sets A, B and the payoff function f. The
main requirement is that f(a,b) is the inner product (a,b) between the actions, and this requires
the actions a, b to be vectors of the same dimension. It also requires the action sets A and B to be
convex.

We now prove a minimax theorem without these requirements. The side effect, however, is
that we need to allow Alice and Bob to play randomized actions (termed mized strategies in game
theory).

Definition 3. Let S be a finite set. We use Ag to denote the set of all probability distributions on
S.

Theorem 5. Let A, B be non-empty finite sets and let f : A x B — R be an arbitrary function.
Then
sSup inf anx,bwy[f(a7 b)] = inf sup anx,bwy[f(avb)}a (1)
z€A 4 YEAB YEAB zeA,
where Eqog pyl] takes the expectation over independently drawn a € A from distribution x and
b € B from distribution y.



Before we prove the theorem, let us introduce some useful notations. For a € A,b € B,z €
Ag,y € Ap, we define

f(x7 b) = Ea’NI[f(a,’ b)]’
fla,y) = Eyy[f(a, )],
f(xv y) = Ea’wx,b’fvy[f(a,’ b/)]

Using this notation, the conclusion of Theorem [5| can be equivalently written as

sup inf f(z,y) = inf sup f(z,y).
zEA 4 YEAB YEAB zeA,

Moreover, it is easy to see that for every fixed z € A4,

. o .
ylenABf(:B,y) rbrggf(w,b)

Similarly, for every fixed y € Ap,

sup f(z,y) = max f(a,y).
TEA a€A

We thus have following corollary of Theorem

Corollary 6. Let A, B be non-empty finite sets and let f : A x B — R be an arbitrary function.

Ther?]

sup min f(x,b) = sup inf f(x,y) = inf su z,y) = inf max f(a,y).
weApAber( ) xeApAyeABf( y) yeAsxefAf( y) = inf maxf(a,y)

Proof of Theorem [5 Assume without loss of generality that A = {1,...,m} and B = {1,...,n}.
Define matrix F' € R™*™ where Fj; = f(i,j) for every i € A and j € B. Every € Ay can be
viewed as a vector z = (z1,...,%,) € R™ where each x; is the probability mass Pry..[a = i] on

i € A. Similarly, every y € Ap can be viewed as a vector y € R™. This allows us to view A4 as a
subset of R™ and Apg as a subset of R”. Now we have

anx,bwy[f(aa b)] = xTFy = <I‘, Fy>

Our goal becomes

sup inf (z, Fy) = inf sup (x, Fy).
xeAAyGAB< Y) yeABxeAA< Y)

This follows from Theorem |3 immediately because both A4 and {Fy : y € Ap} are non-empty
compact convex subsets of R™. ]

20One can in fact replace every “sup” with “max” and replace every “inf” with “min” in this corollary. All the
min’s and max’s are attainable. We leave the proof of this fact to interested readers.



4 Minimax Theorem for Concave-Convex Functions

We prove a generalization of Theorem [3|to concave-convex functions in Theorem [7] below. We need
the following two definitions to state Theorem

Definition 4. Let C C R? be a convex set and let f : C — R be a convex function. We say f is
closed if its epigraph Ey is closed, where

E¢:={(z,t) e C xR: f(z) <t}
Correspondingly, we say a concave function g : C — R is closed if —g is closed.

Definition 5. Let A € R™, B C R" be non-empty convex sets. We say f : AX B — R is a
concave-convex function if

1. for every fixred b € B, f(a,b) is a concave function of a € A, and
2. for every fized a € A, f(a,b) is a convex function of b € B.

Theorem 7. Let A € R™, B C R" be non-empty convex sets and let f : A x B — R be a concave-
convez function. Assume that A is bounded, and assume that for every b € B, f(a,b) is a closed
concave function of a € A. Then

inf f(a,b) = inf b).
sup inf f(a,b) égsigﬁf(“’ )

We need the following basic lemma to prove Theorem [7, We leave the proof of the lemma to
interested readers.

Lemma 8. Let C CR? and let f : C — R be a closed convex function. Then for every t € R, the
following set is closed:

{z eC: f(x) <t}

Similarly, let g : C — R be a closed concave function. Then for every t € R, the following set is
closed:

{reC: f(x) >t}
We also need the famous Jensen’s inequality, which we will prove later in this course.

Definition 6. Let S be a finite set, and let f : S — R be a function. For every distribution x € Ag,
we define f(x) :=Esugpf(s).

Theorem 9 (Jensen’s inequality). Let A C R? be a convex set and let f : A — R be a convex
function. For every finite subset S C A and every distribution x € Ag, letting p, € A denote the
mean Eq.[a], we have

f(@) = fpa)-

Similarly, if f is concave (rather than convez), we have the reverse inequality



Proof of Theorem[7. By Lemma it suffices to prove the reverse inequality sup,¢ 4 infrep f(a,b) >
infpe psup,e4 f(a,b). To prove this, it suffices to prove that for every t1,t; € R satisfying

t, > inf ,b), d 2
1 2‘;5;;23““ ), an (2)
te < inf sup f(a,b), (3)
beB acA
it holds that
t > to. (4)

By (2)), for every a € A, there exists b € B such that f(a,b) < t1. For every b € B, define
Sp:=R™\{a€ A: f(a,b) > t1}. We have (J,cp Sp = R™. By Lemma [§ each S is open. Since
A is bounded, we can find a bounded closed ball  C R™ satisfying A C (). Since (Q is compact,
there exists a finite subset B’ C B such that (Jycp Sy 2 Q 2 AE| That is, for every a € A, there
exists b € B’ such that f(a,b) < t1, implying that

sup min f(a, b) < ;. (5)
acAbeEB’

By (@),
to < inf sup f(a,b) < inf sup f(a,y),
beB qcA YyEARI g A

where the last inequality follows from Theorem [9 and the fact that f(a,b) is a convex function of
b for every fixed a. Therefore, for every y € Aps, there exists a € A such that f(a,y) > t2. Asin
the proof of Theorem |5, we can view Aps as a non-empty compact convex subset of RIP'l. Now
for every fixed a € A, f(a,y) is an affine function of y € Apg/, so in particular it is a closed convex
function of y € Ap/. Similarly to our construction of B’ satisfying (|5, we can now construct a
finite subset A’ C A satisfying

yeirifB  max f(a,y) > ta. (6)

Our goal is achieved by the following chain of inequalities:

< inf maxf(a,y) (by (@)
= sup min f(z,b) (by Corollary [6)
veA ,, bED’
< sup ingl f(a,b) (by Theorem[9|and f(a,b) being a concave function of a for every fixed b)
acAbEB’
< . (by )
O

3Tt is a standard result in mathematical analysis that every open cover of a compact set has a finite sub-cover.
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