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Lecture 2: Minimax Theorems

Lunjia Hu

Consider the following basic game between two players Alice and Bob. In this game, Alice
chooses an action a from a set A, and Bob chooses an action b from another set B. The result of
the game is determined by a function f : A × B → R: Alice gets f(a, b) points whereas Bob gets
−f(a, b) points. Note that f(a, b) could be positive, zero, or negative, depending on the choices
of both players’ actions a and b. Since the points of the two players sum to zero, such games are
termed zero-sum games.

Both players hope to maximize their points. Alice’s goal is to choose an action a ∈ A that
maximizes f(a, b), whereas Bob’s goal is to choose b ∈ B that minimizes f(a, b).

A special case of a zero-sum game is the “rock paper scissors” game. The fairness of the game
depends crucially on the rule that both players should play synchronously. Indeed, if they play
sequentially, the second player has an advantage of knowing the first players’s action, whereas the
first player has to choose their action without knowing the second player’s action. This advantage
can be quantified as follows.

Assume both players play optimally. When Alice plays first and Bob plays second, Alice will
get the following points:1

max
a∈A

min
b∈B

f(a, b).

When Bob plays first and Alice plays second, Alice will get the following points:

min
b∈B

max
a∈A

f(a, b).

The advantage of playing second is

min
b∈B

max
a∈A

f(a, b)−max
a∈A

min
b∈B

f(a, b) ≥ 0.

Roughly speaking, the minimax theorem states that under certain convexity and regularity
conditions on A,B and f , playing second has no advantage:

max
a∈A

min
b∈B

f(a, b) = min
b∈B

max
a∈A

f(a, b).

The minimax theorem is a central result in game theory. It has the following interpretation that is
very useful in various applications in computer science:

∗https://lunjiahu.com/convex-analysis/
1We assume that the max and min can be attained in this introductory part of the notes. We will not make such

implicit assumptions in the technical part later, where we use sup and inf instead.
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If Alice can ensure f(a, b) ≥ t when she plays second, then she can ensure f(a, b) ≥ t
even when she plays first.

This is useful in computer science because one can think of Alice’s action as an algorithm and
Bob’s action as an input. We view f(a, b) as the performance of algorithm a on input b. Usually,
we’d like to design an algorithm a that performs well on every input b. That is, we want to ensure
f(a, b) ≥ t for some threshold t when Alice plays the algorithm a first. To achieve this goal, if the
minimax theorem holds, we just need to ensure f(a, b) ≥ t when Alice plays second: for every fixed
input b, we aim to find an algorithm a with good performance. This often becomes much easier
than directly finding a single, universal algorithm a that performs well for every input b.

We will prove the minimax theorem using the hyperplane separation theorem. While the con-
nection between the two theorems may appear elusive at first, it is not surprising given that they
are both instances of the following statement:

If something doesn’t exist, then something else must exist.

Indeed, the minimax theorem can be viewed as the following statement:

If Bob cannot ensure f(a, b) < t when he plays first, then Alice can ensure f(a, b) ≥ t
when she plays first.

1 Dual Cone and Polar Cone

Definition 1. We say K ⊆ Rd is a cone if for every x ∈ K and every λ > 0, it holds that λx ∈ K.

Definition 2 (Dual set and polar set). For any S ⊆ Rd, its dual S∗ is defined to be

S∗ := {x∗ ∈ Rd : ⟨x, x∗⟩ ≥ 0 for every x ∈ S}.

The polar S◦ of S is defined to be

S◦ := −(S∗) = {x∗ ∈ Rd : ⟨x, x∗⟩ ≤ 0 for every x ∈ S}.

Lemma 1. The dual and polar of every set S ⊆ Rd are non-empty closed convex cones.

Theorem 2. Let K be a non-empty closed convex cone. Then (K∗)∗ = (K◦)◦ = K.

Proof. We first show that K ⊆ (K∗)∗. Consider any x ∈ K. By the definition of K∗, every x∗ ∈ K∗

satisfies ⟨x, x∗⟩ ≥ 0. This means that x ∈ (K∗)∗.
Now we show that (K∗)∗ ⊆ K. Consider any y ∈ Rd \K. Our goal is to show y /∈ (K∗)∗. Since

K is a closed convex set, by the hyperplane separation theorem, there exists h ∈ Rd such that

⟨x, h⟩ > ⟨y, h⟩ for every x ∈ K.

Since K is a non-empty closed cone (which must contain the origin), the above inequality implies

⟨x, h⟩ ≥ 0 > ⟨y, h⟩ for every x ∈ K.

This implies that h ∈ K∗ and y /∈ (K∗)∗, as desired.
We have now proved (K∗)∗ = K. It remains to prove (K◦)◦ = (K∗)∗. This holds because

K◦ = −(K∗) and (K◦)◦ = −(−(K∗))∗ = (K∗)∗.
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2 Minimax Theorem for Inner Products

When f(a, b) can be expressed as the inner product between Alice’s action a and Bob’s action b,
we have the following fundamental minimax theorem:

Theorem 3. Let A,B ⊆ Rd be convex sets. Assume that A is non-empty and compact. Then

sup
a∈A

inf
b∈B

⟨a, b⟩ = inf
b∈B

sup
a∈A

⟨a, b⟩.

Before we prove the theorem, we first remark that one direction of the theorem is trivial:

Lemma 4. Let A,B be arbitrary sets and let f : A×B → R be an arbitrary function. Then

sup
a∈A

inf
b∈B

f(a, b) ≤ inf
b∈B

sup
a∈A

f(a, b).

Proof. It suffices to show that for every a0 ∈ A and b0 ∈ B,

inf
b∈B

f(a0, b) ≤ sup
a∈A

f(a, b0).

This is true because infb∈B f(a0, b) ≤ f(a0, b0) ≤ supa∈A f(a, b0).

Proof of Theorem 3. By Lemma 4, it suffices to prove the reverse inequality

sup
a∈A

inf
b∈B

⟨a, b⟩ ≥ inf
b∈B

sup
a∈A

⟨a, b⟩.

Define t := infb∈B supa∈A⟨a, b⟩ ∈ R ∪ {±∞}. For every b ∈ B, we have supa∈A⟨a, b⟩ ≥ t. This can
be interpreted as “Bob cannot ensure ⟨a, b⟩ < t when he plays first”. Therefore, for every b ∈ B
and every t′ < t, there exists a ∈ A such that

⟨a, b⟩ > t′.

Define K := {λ(a,−1) : λ ≥ 0, a ∈ A} ⊆ Rd+1 and S := {(b, t′) : b ∈ B, t′ < t} ⊆ Rt+1. Our
assumption that A is a non-empty compact convex set ensures that K is a non-empty closed convex
cone.

Now for every s ∈ S, there exists k ∈ K such that

⟨k, s⟩ > 0.

This means that S ∩K◦ = ∅. By the hyperplane separation theorem, there exists a non-zero vector
h ∈ Rt+1 such that

⟨h, s⟩ ≥ ⟨h, k◦⟩ for every s ∈ S and k◦ ∈ K◦.

By Lemma 1, K◦ is a non-empty closed convex cone (which must contain the origin), so the above
inequality implies

⟨h, s⟩ ≥ 0 for every s ∈ S,

⟨h, k◦⟩ ≤ 0 for every k◦ ∈ K◦.

The second inequality implies h ∈ (K◦)◦, and by Theorem 2 we have h ∈ K. By the definition of
K and the fact that h ̸= 0, there exists a ∈ A and λ > 0 such that h = λ(a,−1). Plugging this
into the first inequality above and using the definition of S, we have

⟨a, b⟩ ≥ t for every b ∈ B.

This proves that supa∈A infb∈B⟨a, b⟩ ≥ t, as desired.
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Remark 1. The compactness assumption on A is necessary. Consider A,B ⊆ R2 such that
A = {(x, 1)}, B = {(1, y)}. Then

sup
a∈A

inf
b∈B

⟨a, b⟩ = −∞, but

inf
b∈B

sup
a∈A

⟨a, b⟩ = +∞.

There is also an example where both quantities are finite but different. Suppose A consists of
points a = (x1, x2, 0, x2 + 1) for x1, x2 ∈ R, and B consists of points b = (y1, y2, y3, y4 − 1), where[
y1 y2
y2 y3

]
⪰ 0 and y4 ≥ 0. We have

⟨a, b⟩ = x1y1 + x2y2 + (x2 + 1)(y4 − 1).

Whenever x2 ̸= 0, we have
inf
b∈B

⟨a, b⟩ = −∞.

Therefore,
sup
a∈A

inf
b∈B

⟨a, b⟩ = sup
a∈A:x2=0

inf
b∈B

⟨a, b⟩ = −1.

Similarly, if y1 ̸= 0 or y2 + y4 ̸= 1, we have

sup
a∈A

⟨a, b⟩ = +∞.

Moreover, y1 = 0 implies y2 = 0. Therefore,

inf
b∈B

sup
a∈A

⟨a, b⟩ = inf
b∈B:y1=y2=0,y4=1

sup
a∈A

⟨a, b⟩ = 0.

3 Minimax Theorem for Two-Player Zero-Sum Games

Theorem 3 has many specific requirements on the action sets A, B and the payoff function f . The
main requirement is that f(a, b) is the inner product ⟨a, b⟩ between the actions, and this requires
the actions a, b to be vectors of the same dimension. It also requires the action sets A and B to be
convex.

We now prove a minimax theorem without these requirements. The side effect, however, is
that we need to allow Alice and Bob to play randomized actions (termed mixed strategies in game
theory).

Definition 3. Let S be a finite set. We use ∆S to denote the set of all probability distributions on
S.

Theorem 5. Let A,B be non-empty finite sets and let f : A × B → R be an arbitrary function.
Then

sup
x∈∆A

inf
y∈∆B

Ea∼x,b∼y[f(a, b)] = inf
y∈∆B

sup
x∈∆A

Ea∼x,b∼y[f(a, b)], (1)

where Ea∼x,b∼y[·] takes the expectation over independently drawn a ∈ A from distribution x and
b ∈ B from distribution y.
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Before we prove the theorem, let us introduce some useful notations. For a ∈ A, b ∈ B, x ∈
∆A, y ∈ ∆B, we define

f(x, b) := Ea′∼x[f(a
′, b)],

f(a, y) := Eb′∼y[f(a, b
′)],

f(x, y) := Ea′∼x,b′∼y[f(a
′, b′)].

Using this notation, the conclusion (1) of Theorem 5 can be equivalently written as

sup
x∈∆A

inf
y∈∆B

f(x, y) = inf
y∈∆B

sup
x∈∆A

f(x, y).

Moreover, it is easy to see that for every fixed x ∈ ∆A,

inf
y∈∆B

f(x, y) = min
b∈B

f(x, b).

Similarly, for every fixed y ∈ ∆B,

sup
x∈∆A

f(x, y) = max
a∈A

f(a, y).

We thus have following corollary of Theorem 5:

Corollary 6. Let A,B be non-empty finite sets and let f : A × B → R be an arbitrary function.
Then2

sup
x∈∆A

min
b∈B

f(x, b) = sup
x∈∆A

inf
y∈∆B

f(x, y) = inf
y∈∆B

sup
x∈∆A

f(x, y) = inf
y∈∆B

max
a∈A

f(a, y).

Proof of Theorem 5. Assume without loss of generality that A = {1, . . . ,m} and B = {1, . . . , n}.
Define matrix F ∈ Rm×n where Fij = f(i, j) for every i ∈ A and j ∈ B. Every x ∈ ∆A can be
viewed as a vector x = (x1, . . . , xm) ∈ Rm where each xi is the probability mass Pra∼x[a = i] on
i ∈ A. Similarly, every y ∈ ∆B can be viewed as a vector y ∈ Rn. This allows us to view ∆A as a
subset of Rm and ∆B as a subset of Rn. Now we have

Ea∼x,b∼y[f(a, b)] = xTFy = ⟨x, Fy⟩.

Our goal (1) becomes
sup
x∈∆A

inf
y∈∆B

⟨x, Fy⟩ = inf
y∈∆B

sup
x∈∆A

⟨x, Fy⟩.

This follows from Theorem 3 immediately because both ∆A and {Fy : y ∈ ∆B} are non-empty
compact convex subsets of Rm.

2One can in fact replace every “sup” with “max” and replace every “inf” with “min” in this corollary. All the
min’s and max’s are attainable. We leave the proof of this fact to interested readers.
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4 Minimax Theorem for Concave-Convex Functions

We prove a generalization of Theorem 3 to concave-convex functions in Theorem 7 below. We need
the following two definitions to state Theorem 7:

Definition 4. Let C ⊆ Rd be a convex set and let f : C → R be a convex function. We say f is
closed if its epigraph Ef is closed, where

Ef := {(x, t) ∈ C × R : f(x) ≤ t}.

Correspondingly, we say a concave function g : C → R is closed if −g is closed.

Definition 5. Let A ∈ Rm, B ⊆ Rn be non-empty convex sets. We say f : A × B → R is a
concave-convex function if

1. for every fixed b ∈ B, f(a, b) is a concave function of a ∈ A, and

2. for every fixed a ∈ A, f(a, b) is a convex function of b ∈ B.

Theorem 7. Let A ∈ Rm, B ⊆ Rn be non-empty convex sets and let f : A×B → R be a concave-
convex function. Assume that A is bounded, and assume that for every b ∈ B, f(a, b) is a closed
concave function of a ∈ A. Then

sup
a∈A

inf
b∈B

f(a, b) = inf
b∈B

sup
a∈A

f(a, b).

We need the following basic lemma to prove Theorem 7. We leave the proof of the lemma to
interested readers.

Lemma 8. Let C ⊆ Rd and let f : C → R be a closed convex function. Then for every t ∈ R, the
following set is closed:

{x ∈ C : f(x) ≤ t}.

Similarly, let g : C → R be a closed concave function. Then for every t ∈ R, the following set is
closed:

{x ∈ C : f(x) ≥ t}.

We also need the famous Jensen’s inequality, which we will prove later in this course.

Definition 6. Let S be a finite set, and let f : S → R be a function. For every distribution x ∈ ∆S,
we define f(x) := Es∼xf(s).

Theorem 9 (Jensen’s inequality). Let A ⊆ Rd be a convex set and let f : A → R be a convex
function. For every finite subset S ⊆ A and every distribution x ∈ ∆S, letting µx ∈ A denote the
mean Ea∼x[a], we have

f(x) ≥ f(µx).

Similarly, if f is concave (rather than convex), we have the reverse inequality

f(x) ≤ f(µx).
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Proof of Theorem 7. By Lemma 4, it suffices to prove the reverse inequality supa∈A infb∈B f(a, b) ≥
infb∈B supa∈A f(a, b). To prove this, it suffices to prove that for every t1, t2 ∈ R satisfying

t1 > sup
a∈A

inf
b∈B

f(a, b), and (2)

t2 < inf
b∈B

sup
a∈A

f(a, b), (3)

it holds that
t1 ≥ t2. (4)

By (2), for every a ∈ A, there exists b ∈ B such that f(a, b) < t1. For every b ∈ B, define
Sb := Rm \ {a ∈ A : f(a, b) ≥ t1}. We have

⋃
b∈B Sb = Rm. By Lemma 8, each Sb is open. Since

A is bounded, we can find a bounded closed ball Q ⊆ Rm satisfying A ⊆ Q. Since Q is compact,
there exists a finite subset B′ ⊆ B such that

⋃
b∈B′ Sb ⊇ Q ⊇ A.3 That is, for every a ∈ A, there

exists b ∈ B′ such that f(a, b) < t1, implying that

sup
a∈A

min
b∈B′

f(a, b) ≤ t1. (5)

By (3),
t2 < inf

b∈B
sup
a∈A

f(a, b) ≤ inf
y∈∆B′

sup
a∈A

f(a, y),

where the last inequality follows from Theorem 9 and the fact that f(a, b) is a convex function of
b for every fixed a. Therefore, for every y ∈ ∆B′ , there exists a ∈ A such that f(a, y) > t2. As in
the proof of Theorem 5, we can view ∆B′ as a non-empty compact convex subset of R|B′|. Now
for every fixed a ∈ A, f(a, y) is an affine function of y ∈ ∆B′ , so in particular it is a closed convex
function of y ∈ ∆B′ . Similarly to our construction of B′ satisfying (5), we can now construct a
finite subset A′ ⊆ A satisfying

inf
y∈∆B′

max
a∈A′

f(a, y) ≥ t2. (6)

Our goal (4) is achieved by the following chain of inequalities:

t2 ≤ inf
y∈∆B′

max
a∈A′

f(a, y) (by (6))

= sup
x∈∆A′

min
b∈B′

f(x, b) (by Corollary 6)

≤ sup
a∈A

min
b∈B′

f(a, b) (by Theorem 9 and f(a, b) being a concave function of a for every fixed b)

≤ t1. (by (5))

3It is a standard result in mathematical analysis that every open cover of a compact set has a finite sub-cover.
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