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A central result in convex analysis is the hyperplane separation theorem. The theorem is
geometrically very intuitive, yet it has broad and powerful applications in various areas of computer
science, statistics, and economics. It states that every pair of disjoint convex sets can be separated
by a hyperplane:

Theorem 1 (Hyperplane separation theorem). Let C1, C2 ⊆ Rd be two disjoint convex sets. There
exists a non-zero vector h ∈ Rd such that

⟨x1, h⟩ ≥ ⟨x2, h⟩ for every x1 ∈ C1, x2 ∈ C2. (1)

We will discuss its proof shortly. What makes this theorem really powerful is its constructive
nature. It shows:

If something does not exist, then something else must exist.

In the context of Theorem 1, “something” is a point x that belongs to both C1 and C2 (which does
not exist), and “something else” is the separating hyperplane h. We will see many more examples
of similar nature later in the course.

1 Conditions for Strict Separation

An important question about this theorem is the conditions for strict separation: under what
conditions can we make the non-strict inequality “≥” in (1) become strict “>”? The answer to
this question will be very useful for our future discussions about minimax theorems and Lagrange
duality, especially for understanding Slater’s condition.

Here are two fairly illustrative examples where strict separation fails.

1. C1 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, C2 = {(x, y) ∈ R2 : x = 1, y > 0};

2. C1 = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1}, C2 = {(x, y, z) ∈ R3 : x = 1, y ≥ 0, yz ≥ 1}.

In the following theorem, we summarize three sufficient conditions for strict separation:

Theorem 2 (Strict hyperplane separation). Let C1, C2 ⊆ Rd be two disjoint convex sets. Assume
at least one of the following conditions is satisfied:

1. either C1 or C2 is open;
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2. C1 is closed and C2 is compact;

3. C1, C2 can both be written as the intersection of a convex polyhedron1 and a convex open set
(this is crucial for understanding Slater’s condition in Lagrange duality, which we will discuss
later).

Then there exists a vector h ∈ Rd such that

⟨x1, h⟩ > ⟨x2, h⟩ for every x1 ∈ C1, x2 ∈ C2. (2)

2 Proving Hyperplane Separation Theorems

We need the following lemma to prove Theorem 1. We use 0 to denote the zero vector (a.k.a. the
origin).

Lemma 3. Let C ⊆ Rd be an open convex set. Assume 0 /∈ C. Then there exists h ∈ Rd such that

⟨x, h⟩ > 0 for every x ∈ C.

We present two proofs of the lemma. Both proofs use induction.

Proof 1. We prove this lemma by induction on d. We first need to prove the lemma for the special
cases d = 1, 2. We leave this part as an exercise for interested readers. We focus on the d ≥ 3 case
from now on.

Define X ′ ⊆ Rd to be the two-dimensional linear subspace consisting of vectors with all but
the first two coordinates being zero: X ′ := {(x1, x2, 0, . . . , 0) ∈ Rd : x1, x2 ∈ R}. Now C ∩ X ′

is a (possibly empty) open convex subset of the two-dimensional subspace X ′. By the induction
hypothesis for d = 2, there exists h0 ∈ X ′ such that ⟨x, h0⟩ > 0 for every x ∈ C ∩X ′. We assume
without loss of generality that h0 = (0, 1, 0, 0, . . . , 0).

For every x = (x1, x2, . . . , xd) ∈ Rd, define proj(x) := (x2, x3, . . . , xd) ∈ Rd−1. We show that
proj(x) ̸= 0 for every x ∈ C. We prove this by contradiction. If proj(x) = 0 for some x ∈ C, then x
must belong to C ∩X ′. However, this implies that x2 = ⟨x, h0⟩ > 0, contradicting the assumption
that proj(x) = 0.

We have now shown that C ′ := {proj(x) : x ∈ C} is a subset of Rd−1 that does not contain the
origin 0. Since C is convex and open, it is clear that C ′ is also convex and open. By the induction
hypothesis for d− 1, there exists h1 ∈ Rd−1 such that ⟨proj(x), h1⟩ > 0 for every x ∈ C. Let h ∈ Rd

be the vector whose first coordinate is zero, and the remaining d−1 coordinates are the coordinates
of h1. For every x ∈ C, we have ⟨x, h⟩ = ⟨proj(x), h1⟩ > 0, as desired.

Proof 2. We prove this lemma by induction on d. This inductive idea comes from the proof of the
Hahn-Banach Theorem, which is a fundamental result in functional analysis.2

We first need to prove the lemma for the special cases d = 1, 2. We leave this part as an
exercise for interested readers. We focus on the d ≥ 3 case from now on and assume without loss
of generality that C is non-empty.

1A convex polyhedron is the intersection of finitely many closed halfspaces. A closed halfspace is a set of the form
{x ∈ Rd : ⟨x, h⟩ ≤ b} for some h ∈ Rd and b ∈ R.

2See https://www.math.ksu.edu/~nagy/real-an/ap-e-h-b.pdf.
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Let S ⊆ Rd be an arbitrary linear subspace with dimension d− 1 such that C ∩ S ̸= ∅. By the
inductive hypothesis, there exists a linear function fS : S → R such that

fS(x) > 0 for every x ∈ C ∩ S. (3)

Since C ∩ S ̸= ∅, we know that fS is not the constant zero function.
Pick v ∈ Rd \ S arbitrarily. Every x ∈ Rd can be uniquely decomposed as x = xS + αxv, where

xS ∈ S and αx ∈ R. We construct the following convex set C ′ ⊆ R2:

C ′ := {(fS(xS), αx) : x ∈ C}. (4)

The fact that fS is not the constant zero function ensures that C ′ is open. By the inductive
hypothesis (3), we have (0, 0) /∈ C ′. Therefore, there exists a linear function g : R2 → R such that

g(x′) > 0 for every x′ ∈ C ′. (5)

Define f : Rd → R such that f(x) := g((fS(xS), αx)) for every x ∈ Rd. Now f is a linear function,
and by (4) and (5), it satisifies f(x) > 0 for every x ∈ C, completing the proof.

We are now ready to prove Theorem 1. We say a set A ⊆ Rd is affine if it can be written as
A = S + v for a linear subspace S ⊆ Rd and an offset v ∈ Rd. The dimension of A is defined as
the dimension of S. The affine hull of a set C ⊆ Rd is the smallest affine set containing C.

Proof of Theorem 1. Define C := C1 − C2. That is,

C = {x1 − x2 : x1 ∈ C1, x2 ∈ C2}.

By the assumption that C1 and C2 are disjoint, we have 0 /∈ C. Our hope is to apply Lemma 3
to C, but this cannot be done directly because C is not necessarily open. We thus consider the
following two cases:

Case 1: the affine hull of C has dimension d. In this case, the interior of C (denoted by intC)
is a non-empty open convex set which does not contain 0. We can thus apply Lemma 3 to intC
to get h ∈ Rd such that ⟨x, h⟩ > 0 for every x ∈ intC. Moreover, every x ∈ C is the limit of a
convergent sequence of points in intC, so we have ⟨x, h⟩ ≥ 0 for every x ∈ C. This proves (1).

Case 2: the affine hull of C (denoted by A) has dimension below d. If A does not contain the
origin, then the theorem trivially holds. If A contains the origin, then it is a subspace of Rd with
dimension d′ < d. Focusing on this subspace (instead of the entire Rd) reduces to Case 1 (with d
replaced by d′).

2.1 Strict Separation from Closedness and Compactness

Theorem 4. Let C1, C2 ⊆ Rd be two disjoint non-empty convex sets. Assume that C1 is closed
and C2 is compact. Then there exists h ∈ Rd such that

min
x1∈X1

⟨x1, h⟩ > max
x2∈X2

⟨x2, h⟩,

where both the min and the max can be attained.
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Proof. We claim that there exist x∗1 ∈ X1 and x∗2 ∈ X2 such that

0 < ∥x∗1 − x∗2∥2 ≤ ∥x1 − x2∥2 for every x1 ∈ X1 and x2 ∈ X2.

This claim holds by a basic mathematical analysis argument. We omit the proof here.
Define ℓ := ∥x∗1 − x∗2∥2 > 0. We enlarge C2 to C ′

2 as follows:

C ′
2 := C2 +B(0, ℓ) = {x2 + z : x2 ∈ C2, ∥z∥2 < ℓ}.

It is clear that C ′
2 is a convex set disjoint from C1. By Theorem 1, there exists h ∈ Rd with ∥h∥2 = 1

such that

⟨x1, h⟩ ≥ ⟨x2 + z, h⟩ for every x1 ∈ C1, x2 ∈ C2 and z ∈ Rd with ∥z∥2 < ℓ.

Choosing z → ℓh, we have ⟨z, h⟩ → ℓ, so

⟨x1, h⟩ ≥ ⟨x2, h⟩+ ℓ for every x1 ∈ C1, x2 ∈ C2.

However, since ∥x∗1 − x∗2∥2 = ℓ, we have

⟨x∗1, h⟩ ≤ ⟨x∗2, h⟩+ ℓ.

Combining the two inequalities above, we have

⟨x∗1, h⟩ = min
x1∈C1

⟨x1, h⟩,

⟨x∗2, h⟩ = max
x2∈C2

⟨x2, h⟩,

and
min
x1∈C1

⟨x1, h⟩ = max
x2∈C2

⟨x2, h⟩+ ℓ > max
x2∈C2

⟨x2, h⟩.

2.2 Strict Separation from Intersections of Convex Polyhedra and Convex Open
sets

Theorem 5 (Strict separation). Let O1, O2 ⊆ Rd be convex open sets and let P1, P2 ⊆ Rd be convex
polyhedra. Define C1 = O1 ∩ P1 and C2 = O2 ∩ P2. Assume C1 and C2 are disjoint. Then there
exists a vector h ∈ Rd such that

⟨x1 − x2, h⟩ > 0 for every x1 ∈ C1, x2 ∈ C2.

We need the following helper lemmas:

Lemma 6. Let C ⊆ Rd be a non-empty convex set. Assume 0 /∈ C. Then there exists a vector
h ∈ Rd such that

⟨x, h⟩ ≥ 0 for every x ∈ C, and (6)

⟨x, h⟩ > 0 for some x ∈ C. (7)
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Proof. Similarly to the proof of Theorem 1, we can assume without loss of generality that the affine
hull of C has dimension d. Now by Theorem 1, there exists h ∈ Rd such that (6) holds. We show
that (7) must also hold. If not, then ⟨x, h⟩ = 0 for every x ∈ C. This means that C is contained
in a (d− 1)-dimensional subspace, contradicting with the assumption that the affine hull of C has
dimension d.

Lemma 7. Let O ⊆ Rd be an open convex set. Let p1, . . . , pm, q1, . . . , qn ∈ Rd and a1, . . . , am,
b1, . . . , bn ∈ R be vectors and real numbers. Suppose there does not exist o ∈ O that satisfy all of
the following inequalities and equalities:

⟨o, p1⟩ ≤ a1, . . . , ⟨o, pm⟩ ≤ am, ⟨o, q1⟩ = b1, . . . , ⟨o, qn⟩ = bn.

Then there exist g1, . . . , gm ≥ 0 and h1, . . . , hn ∈ R such that

m∑
i=1

gi(⟨o, pi⟩ − ai) +

n∑
j=1

hj(⟨o, qj⟩ − bj) > 0 for every o ∈ O.

Proof. We assume without loss of generality that O is non-empty. Let C be the set of vectors
(x1, . . . , xm, y1, . . . , yn) ∈ Rm+n such that there exists o ∈ O satisfying

⟨o, p1⟩ − a1 ≤ x1, . . . , ⟨o, pm⟩ − am ≤ xm, ⟨o, q1⟩ − b1 = y1, . . . , ⟨o, qn⟩ − bn = yn.

Clearly, C is a non-empty convex set. The assumptions of the lemma ensure that 0 /∈ C. By
Lemma 6, there exist g1, . . . , gm, h1, . . . , hn ∈ R satisfying

m∑
i=1

gixi +
n∑

j=1

hjyj ≥ 0 for every (x1, . . . , xm, y1, . . . , yn) ∈ C, (8)

m∑
i=1

gixi +
n∑

j=1

hjyj > 0 for some (x1, . . . , xm, y1, . . . , yn) ∈ C. (9)

It is clear that g1, . . . , gm ≥ 0: if some gi is negative, we can always increase xi so that (8) is
violated. For every o ∈ O, we define

f(o) :=
m∑
i=1

gi(⟨o, pi⟩ − ai) +
n∑

j=1

hj(⟨o, qj⟩ − bj).

We prove the lemma by induction on m. We start from the base case m = 0. Inequality (8)
implies that f(o) ≥ 0 for every o ∈ O. We show that the inequality is strict:

f(o) > 0 for every o ∈ O. (10)

Suppose (10) does not hold. Then f is an affine function that is nonnegative on an open set O with
f(o) = 0 for some o ∈ O.3 This is only possible when f is the constant zero function, violating (9).

Now we consider the general case m > 0. Again, by (8) we have f(o) ≥ 0 for every o ∈ O, and
the proof is completed if the strict inequality (10) holds. We thus focus on the case where (10) does

3We say a function f : Rd → R is affine if there exists a linear function f0 : Rd → R and an offset r ∈ R such that
f(x) = f0(x) + r for every x ∈ Rd.
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not hold. As we argued earlier, f must be the constant zero function on O. If g1 = · · · = gm = 0,
then we get the same contradiction with (9) as the m = 0 case. Therefore, some gi must be positive.
Assume without loss of generality that g1 > 0.

Note that the inequality ⟨o, p1⟩ ≤ a1 is a necessary condition for the equality ⟨o, p1⟩ = a1. Thus
by the inductive hypothesis, there exist g′1 ∈ R, g′2, . . . , g′m ≥ 0, and h′1, . . . , h

′
n ∈ R such that

m∑
i=1

g′i(⟨o, pi⟩ − ai) +

n∑
j=1

h′j(⟨o, qj⟩ − bj) > 0 for every o ∈ O. (11)

We have shown f(o) = 0 for every o ∈ O, so

m∑
i=1

gi(⟨o, pi⟩ − ai) +

n∑
j=1

hj(⟨o, qj⟩ − bj) = 0 for every o ∈ O. (12)

For a constant α ≥ 0, defining g′′i = g′i + αgi and h′′j = h′j + αhj , by (11) and (12) we have

m∑
i=1

g′′i (⟨o, pi⟩ − ai) +

n∑
j=1

h′′j (⟨o, qj⟩ − bj) > 0 for every o ∈ O.

Since g1 > 0, when α is sufficiently large, we have g′′1 ≥ 0. Moreover, we always have g′′i = g′i+αgi ≥
0 for i = 2, . . . ,m. This completes the proof.

Proof of Theorem 5. Since P1 is a convex polyhedron, it can be written as P1 = {x ∈ Rd : K1x ≤
a1} for a matrix K1 ∈ Rm1×d and a vector a1 ∈ Rm1 . Here, for two vectors v, v′ ∈ Rm1 , we say
v ≤ v′ if every coordinate of v does not exceed the corresponding coordinate of v′. Similarly, P2

can be written as P2 = {x ∈ Rd : K2x ≤ a2} for a matrix K2 ∈ Rm2×d and a vector a2 ∈ Rm2 .
The assumption that C1 and C2 are disjoint means that there does not exist (o1, o2) ∈ O1 ×O2

satisfying
K1o1 ≤ a1,K2o2 ≤ a2, o1 − o2 = 0.

By Lemma 7, there exist g1 ∈ Rm1
≥0 , g2 ∈ Rm2

≥0 , h ∈ Rd such that

f(o1, o2) := ⟨K1o1 − a1, g1⟩+ ⟨K2o2 − a2, g2⟩+ ⟨o1 − o2, h⟩ > 0 for every (o1, o2) ∈ O1 ×O2.

Now for every x1 ∈ C1 and x2 ∈ C2, we have (x1, x2) ∈ O1 × O2, K1x1 − a1 ≤ 0,K2x2 − a2 ≤ 0.
Therefore,

0 < f(x1, x2) ≤ ⟨x1 − x2, h⟩,

completing the proof.
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