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A central result in convex analysis is the hyperplane separation theorem. The theorem is
geometrically very intuitive, yet it has broad and powerful applications in various areas of computer
science, statistics, and economics. It states that every pair of disjoint convex sets can be separated
by a hyperplane:

Theorem 1 (Hyperplane separation theorem). Let Cp,Co C R be two disjoint convex sets. There
exists a non-zero vector h € R® such that

(x1,h) > (xo,h) for every x; € Cy,x9 € Co. (1)

We will discuss its proof shortly. What makes this theorem really powerful is its constructive
nature. It shows:

If something does not exist, then something else must exist.

In the context of Theorem |1} “something” is a point x that belongs to both C; and Cy (which does
not exist), and “something else” is the separating hyperplane h. We will see many more examples
of similar nature later in the course.

1 Conditions for Strict Separation

An important question about this theorem is the conditions for strict separation: under what
conditions can we make the non-strict inequality “>” in become strict “>”7 The answer to
this question will be very useful for our future discussions about minimax theorems and Lagrange
duality, especially for understanding Slater’s condition.

Here are two fairly illustrative examples where strict separation fails.

1. Oy ={(z,y) eR?: 22 +¢y2 < 1},Cy = {(2,y) €eR?: 2 =1,y > 0};
2. C1 ={(z,y,2) €R3: 22 + 92 <1},Co = {(z,y,2) ER3:x = 1,9y > 0,yz > 1}.
In the following theorem, we summarize three sufficient conditions for strict separation:

Theorem 2 (Strict hyperplane separation). Let C1,Co C RY be two disjoint convex sets. Assume
at least one of the following conditions is satisfied:

1. either C1 or Cy is open;
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2. (4 is closed and Cy is compact;

3. C1,Cy can both be written as the intersection of a convex polyhedroﬂ and a convex open Sset
(this is crucial for understanding Slater’s condition in Lagrange duality, which we will discuss
later).

Then there exists a vector h € R such that

(x1,h) > (xo,h) for every x1 € Cy,x9 € Co. (2)

2 Proving Hyperplane Separation Theorems

We need the following lemma to prove Theorem |1, We use 0 to denote the zero vector (a.k.a. the
origin).

Lemma 3. Let C C RY be an open conver set. Assume 0 ¢ C. Then there exists h € R? such that
(x,h) >0 for every x € C.

We present two proofs of the lemma. Both proofs use induction.

Proof 1. We prove this lemma by induction on d. We first need to prove the lemma for the special
cases d = 1,2. We leave this part as an exercise for interested readers. We focus on the d > 3 case
from now on.

Define X’ C R to be the two-dimensional linear subspace consisting of vectors with all but
the first two coordinates being zero: X' := {(x1,22,0,...,0) € R? : x1,29 € R}. Now C N X’
is a (possibly empty) open convex subset of the two-dimensional subspace X’. By the induction
hypothesis for d = 2, there exists hg € X’ such that (z,hg) > 0 for every x € C' N X’. We assume
without loss of generality that hy = (0,1,0,0,...,0).

For every = = (21,%2,...,24) € RY, define proj(z) := (x2,23,...,24) € R4, We show that
proj(z) # 0 for every x € C. We prove this by contradiction. If proj(z) = 0 for some x € C, then x
must belong to C'N X’. However, this implies that xo = (x, hg) > 0, contradicting the assumption
that proj(z) = 0.

We have now shown that C’ := {proj(z) : € C} is a subset of R?~! that does not contain the
origin 0. Since C is convex and open, it is clear that C” is also convex and open. By the induction
hypothesis for d — 1, there exists h; € R such that (proj(z), k1) > 0 for every = € C. Let h € R?
be the vector whose first coordinate is zero, and the remaining d — 1 coordinates are the coordinates
of hy. For every x € C, we have (x, h) = (proj(z), h1) > 0, as desired. O

Proof 2. We prove this lemma by induction on d. This inductive idea comes from the proof of the
Hahn-Banach Theorem, which is a fundamental result in functional analysisﬂ

We first need to prove the lemma for the special cases d = 1,2. We leave this part as an
exercise for interested readers. We focus on the d > 3 case from now on and assume without loss
of generality that C' is non-empty.

LA convex polyhedron is the intersection of finitely many closed halfspaces. A closed halfspace is a set of the form
{z € R : (x, h) < b} for some h € R? and b € R.
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Let S C R? be an arbitrary linear subspace with dimension d — 1 such that C' NS # (). By the
inductive hypothesis, there exists a linear function fg : S — R such that

fs(x) >0 forevery z e CNS. (3)

Since C'N S # (), we know that fg is not the constant zero function.
Pick v € R?\ S arbitrarily. Every € R? can be uniquely decomposed as x = xg + o, v, where
g € S and o, € R. We construct the following convex set C’ C R?:

C":={(fs(zs),az) : x € C}. (4)

The fact that fs is not the constant zero function ensures that C’ is open. By the inductive
hypothesis (3]), we have (0,0) ¢ C’. Therefore, there exists a linear function g : R?> — R such that

g(z') >0 for every 2’ € C". (5)

Define f: R — R such that f(z) := g((fs(zg), az)) for every x € R%. Now f is a linear function,
and by and , it satisifies f(x) > 0 for every x € C', completing the proof. O

We are now ready to prove Theorem [Il We say a set A C R? is affine if it can be written as
A = 8+ v for a linear subspace S C R% and an offset v € R?. The dimension of A is defined as
the dimension of S. The affine hull of a set C C R? is the smallest affine set containing C.

Proof of Theorem[1. Define C := Cy — C5. That is,
C = {1‘1 — X9 :X1 € Cl,xQ S Cg}

By the assumption that C; and Cy are disjoint, we have 0 ¢ C. Our hope is to apply Lemma
to C', but this cannot be done directly because C' is not necessarily open. We thus consider the
following two cases:

Case 1: the affine hull of C' has dimension d. In this case, the interior of C' (denoted by int C)
is a non-empty open convex set which does not contain 0. We can thus apply Lemma [3| to intC
to get h € R? such that (z,h) > 0 for every € intC. Moreover, every z € C is the limit of a
convergent sequence of points in int C, so we have (x, h) > 0 for every x € C. This proves (]1)).

Case 2: the affine hull of C' (denoted by A) has dimension below d. If A does not contain the
origin, then the theorem trivially holds. If A contains the origin, then it is a subspace of R? with
dimension d’ < d. Focusing on this subspace (instead of the entire R?) reduces to Case 1 (with d
replaced by d'). O

2.1 Strict Separation from Closedness and Compactness

Theorem 4. Let C1,Cy C R? be two disjoint non-empty convexr sets. Assume that Cy is closed
and Cy is compact. Then there exists h € R% such that

i h) > h
SEp et > gl b

where both the min and the max can be attained.



Proof. We claim that there exist 2] € X7 and 23 € X5 such that
0 < ||lx] — x35]]2 < ||z1 — x2||2  for every x1 € X1 and x5 € Xo.

This claim holds by a basic mathematical analysis argument. We omit the proof here.
Define ¢ := ||z} — 23||2 > 0. We enlarge Cy to CY, as follows:

Cé =Cy+ B(0,4) ={xa+ 2z : 29 € O, ||2||]2 < £}.

It is clear that C is a convex set disjoint from C;. By Theorem there exists h € R? with ||h|j2 = 1
such that

(x1,h) > (xa + 2z, h) for every x; € C1,z2 € Cy and z € R? with l|lz|l2 < £.
Choosing z — £h, we have (z,h) — ¢, so
(x1,h) > (x9,h) + £ for every x1 € C1, 29 € Cs.
However, since ||z} — a3||2 = ¢, we have
(x],h) < (x5, h) + L.
Combining the two inequalities above, we have

(x7,h) = min (x1,h),

z1€C
{3, h) = max (z2, h),
and
mrlneléll (x1,h) = zglélé(ﬂ:g, h) +¢> glélé(xg, h). O

2.2 Strict Separation from Intersections of Convex Polyhedra and Convex Open
sets

Theorem 5 (Strict separation). Let O1, 02 C R< be convex open sets and let Py, Py C R< be convex
polyhedra. Define C1 = Oy NPy and Cy = O3 N Py. Assume C1 and Cy are disjoint. Then there
exists a vector h € R% such that

(x1 —x2,h) >0 for every x1 € Cy,x2 € Ch.
We need the following helper lemmas:

Lemma 6. Let C C RY be a non-empty convex set. Assume 0 ¢ C. Then there exists a vector
h € R? such that

(x,h) >0 for every x € C, and (6)
(x,h) >0 for some x € C. (7



Proof. Similarly to the proof of Theorem [} we can assume without loss of generality that the affine
hull of C has dimension d. Now by Theorem |1}, there exists h € R¢ such that @ holds. We show
that must also hold. If not, then (x,h) = 0 for every x € C. This means that C is contained
in a (d — 1)-dimensional subspace, contradicting with the assumption that the affine hull of C' has

dimension d. O
Lemma 7. Let O C R? be an open convex set. Let pi,...,pm.q1,---,qn € R? and ai,...,am,
b1,...,by, € R be vectors and real numbers. Suppose there does not exist o € O that satisfy all of

the following inequalities and equalities:

<O,p1> <ai,..., <O7pm> < am, <0,(Z1> =b1,..., <O, Qn> = by,.

Then there exist g1,...,9m > 0 and hy,...,h, € R such that

Zgi(@,pi) —a;) + Zhj(<0, gj) —b;) >0 for every o € O.
i=1 j=1

Proof. We assume without loss of generality that O is non-empty. Let C' be the set of vectors
(T1, oy Ty Y1,y - - -, Yn) € R™T™ such that there exists o € O satisfying

<0ap1> —ai < Tly--ny <07pm> — Qm < T, <07 q1> - bl =Y1y--y <07 qn> - bn = Yn.

Clearly, C' is a non-empty convex set. The assumptions of the lemma ensure that 0 ¢ C. By
Lemma [0} there exist g1, ..., gm,h1,...,h, € R satisfying

m n
Zgixi + Zhjyj >0 forevery (z1,...,Zm,Y1,---,Yn) € C, (8)
i=1 j=1
m n
Zgixi —|—Zhjyj >0 for some (x1,...,Zm,Y1,---,Yn) € C. (9)
i=1 j=1

It is clear that gi,...,g9m > 0: if some g; is negative, we can always increase x; so that is

violated. For every o € O, we define
m n
f(0) =" gil{o,pi) — ai) + Y _ hi({0,q5) = bj)-
i=1 j=1
We prove the lemma by induction on m. We start from the base case m = 0. Inequality
implies that f(o) > 0 for every o € O. We show that the inequality is strict:

f(o) >0 for every o € O. (10)

Suppose does not hold. Then f is an affine function that is nonnegative on an open set O with
f(o) =0 for some o € OE| This is only possible when f is the constant zero function, violating (9).

Now we consider the general case m > 0. Again, by we have f(0) > 0 for every o € O, and
the proof is completed if the strict inequality holds. We thus focus on the case where does

3We say a function f : R — R is affine if there exists a linear function fo : R? — R and an offset r € R such that
f(x) = fo(z) + r for every = € R,



not hold. As we argued earlier, f must be the constant zero function on O. If gy =--- = g, =0,
then we get the same contradiction with @ as the m = 0 case. Therefore, some g; must be positive.
Assume without loss of generality that g; > 0.

Note that the inequality (o,p1) < ay is a necessary condition for the equality (o,p1) = aj. Thus
by the inductive hypothesis, there exist g] € R, g5,...,g), > 0, and h},..., k), € R such that

Zgé((o,p,-) —a;) + Zh;(@, q;) —b;j) >0 for every o € O. (11)
i=1 j=1
We have shown f(0) = 0 for every o € O, so

m n
Zgi«o,pi) —a;) + Z hj({o,q;) —b;) =0 for every o € O. (12)
i=1 j=1

For a constant a > 0, defining g;' = g; + ag; and b} = h; + ahj, by and we have

Zgé’((o,pi) —a;) + Z hi({0,q;) — bj) >0 for every o € O.
i=1 j=1

1

Since g1 > 0, when « is sufficiently large, we have g > 0. Moreover, we always have g’ = g, +ag;

>
0 for ¢ = 2,...,m. This completes the proof. O
<

Proof of Theorem[5 Since P is a convex polyhedron, it can be written as P, = {z € R?: Kz
a1} for a matrix K; € R™*4 and a vector a; € R™. Here, for two vectors v,v’ € R™ we say
v < v if every coordinate of v does not exceed the corresponding coordinate of v’. Similarly, P,
can be written as P, = {x € R? : Kyx < ap} for a matrix Ky € R™2*4 and a vector ay € R™2.
The assumption that C7 and Cy are disjoint means that there does not exist (01,02) € O1 X O3
satisfying
K01 < a1,K209 < ag,01 —o09 = 0.

By Lemma (7} there exist g1 € RYj, g2 € R{§, h € R? such that
f(o1,02) := (K101 — a1, g1) + (K202 — ag, g2) + (01 — 02,h) > 0 for every (01,02) € O1 X Os.

Now for every x; € C1 and z9 € Co, we have (x1,22) € O1 X O2, K121 — a1 < 0, Koxo —as < 0.
Therefore,
0 < f(w1,72) < (21 — 22, h),

completing the proof. O
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