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Lecture 3: Lagrange Duality
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Linear programs (LPs) are a basic form of constrained optimization problems. Consider the
following LP:

minimize
x1,x2∈R

3x1 + 7x2 (P0)

s.t. x1 − 3x2 ≤ −2, (1)

− 2x1 + 5x2 ≤ 3. (2)

Let OPT denote the optimal value of this LP. If someone wants us to prove OPT ≤ 10, we just
need to show them the solution x1 = x2 = 1. This solution indeed achieves the desired objective
3x1 + 7x2 = 10 while satisfying both constraints. But if someone wants us to prove OPT ≥ 10,
what should we do?

Proving OPT ≥ 10 feels more challenging because it corresponds to proving “something does
NOT exist”. It corresponds to proving that there does NOT exist (x1, x2) achieving 3x1+7x2 < 10
while satisfying the two constraints. This is a “non-existence” statement, whereas a proof, by
definition, is an “existence” statement (the proof itself is the object that exists).

How do we turn the “non-existence” statement into an “existence” statement? For this specific
LP, we can prove OPT ≥ 10 using the existence of two coefficients h1 = 29, h2 = 16 satisfying the
following identity:

3x1 + 7x2 + h1(x1 − 3x2 + 2) + h2(−2x1 + 5x2 − 3) = 10 for all x1, x2 ∈ R.

This identity can be verified using simple calculations, and it indeed shows that 3x1 + 7x2 ≥ 10
whenever the two constraints (1) and (2) are satisfied.

Is it always possible to prove the optimum value of an LP in this way? How about convex
optimization problems beyond LP? In this lecture we answer these questions using the theory of
Lagrange duality. In the example above, x1 = x2 = 1 is often termed the optimal primal solution
to the LP, whereas h1 = 29, h2 = 16 is the optimal dual solution. The coefficients h1, h2 are also
termed Lagrange multipliers. We will make sense of these terms in this lecture.

1 Core Duality Theorem

The following theorem lies at the core of essentially every Lagrange duality theorem:
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Theorem 1. Let C ⊆ Rm+n be a convex set. Suppose the following condition cannot be satisfied
by any x ∈ Rm and y ∈ Rn:

(x, y) ∈ C and y = 0. (3)

Then there exists a non-zero vector h ∈ Rn such that

⟨y, h⟩ ≥ 0 for every (x, y) ∈ C. (4)

If in addition C is the intersection of a convex open set O and a convex polyhedron P , then there
exists h ∈ Rn such that

⟨y, h⟩ > 0 for every (x, y) ∈ C. (5)

Proof. Let Z ⊆ Rm+n be the set of vectors (z,0n) where z ∈ Rm is arbitrary and 0n ∈ Rn is the
zero vector. It is clear that Z is a convex polyhedron. Since condition (3) is not satisfiable, we have
C∩Z = ∅, so by the separating hyperplane theorem, there exists a non-zero vector (h1, h) ∈ Rm×Rn

such that
⟨x, h1⟩+ ⟨y, h⟩ ≥ ⟨z, h1⟩ for every (x, y) ∈ C and every z ∈ Rm.

Since z ∈ Rm can be arbitrary, the above inequality can only hold when h1 = 0m is the zero vector
in Rm. This proves (4).

When C is the intersection of a convex open set and a convex polyhedron, we have strict
hyperplane separation: there exists (h1, h) ∈ Rm × Rn such that

⟨x, h1⟩+ ⟨y, h⟩ > ⟨z, h1⟩ for every (x, y) ∈ C and every z ∈ Rm.

Again, we must have h1 = 0m. Thus (5) holds.

2 Lagrange Duality

We consider a very general convex optimization problem as follows. Let m,n, n′ be nonnegative
integers. Let E ⊆ Rm, S ⊆ Rn′

be two convex sets and let f0, f1, . . . , fn : E → R be convex functions
defined on E. Let A ∈ Rn′×m be a matrix. These objects define a general convex optimization
problem:

minimize
x∈E

f0(x) (P1)

s.t. fi(x) < 0 for every i = 1, . . . , n, (6)

Ax ∈ S. (7)

The main goal of this section is to prove the following duality theorem:

Theorem 2 (Lagrange duality). Assume the following regularity conditions hold in the optimization
problem (P1):

1. E is a convex open set;

2. S is the intersection of a convex open set and a convex polyhedron.
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Assume (P1) is feasible, that is, there exists x ∈ E satisfying the constraints (6) and (7). For
some threshold t ∈ R, assume that the objective value of (P1) cannot go below t, that is, no
x ∈ E achieves f0(x) < t while satisfying the constraints (6) and (7). Then there exist Lagrange
multipliers h1, . . . , hn ≥ 0 and h′ ∈ Rn′

such that

f0(x) +

n∑
i=1

hifi(x) + ⟨Ax− s, h′⟩ ≥ t for every x ∈ E and s ∈ S. (8)

Remark 1. The converse of Theorem 2 holds trivially: if there exist h1, . . . , hn ≥ 0 and h′ ∈ Rn′

such that (8) holds, then the objective value of (P1) cannot go below t. Theorem 2 thus finds a
proof for the fact that the optimal objective value of (P1) is at least t.

Remark 2. Note how Theorem 2 turns a non-existence statement into an existence statement. It
follows the same spirit as the hyperplane separation theorem and the minimax theorem:

If something doesn’t exist, then something else must exist.

Proof. Let C be the set of vectors (x, y0, y, y
′) ∈ Rm×R×Rn×Rn′

satisfying the following conditions
(where y = (y1, . . . , yn) ∈ Rn):

x ∈ E,

f0(x)− y0 < t, (9)

fi(x)− yi < 0 for every i = 1, . . . , n, (10)

Ax− y′ ∈ S. (11)

We first show that C can be written as the intersection of an open convex set and a convex
polyhedron. Observe that C = C0 ∩ C1 ∩ · · · ∩ Cn ∩ Cn+1, where

C0 = {(x, y0, y, y′) ∈ Rm × R× Rn × Rn′
: x ∈ E and f0(x)− y0 < t},

Ci = {(x, y0, y, y′) ∈ Rm × R× Rn × Rn′
: x ∈ E and fi(x)− yi < 0} for every i = 1, . . . , n,

Cn+1 = {(x, y0, y, y′) ∈ Rm × R× Rn × Rn′
: Ax− y′ ∈ S}.

It is a standard result that every convex function f : E → R defined on an open convex set
E ⊆ Rm must be continuous. This implies that C0, C1, . . . , Cn are all open. Also, C0, C1, . . . , Cn

are all clearly convex. Since Ax − y′ is a linear function of (x, y′), our assumption that S is the
intersection of an open convex set and a convex polyhedron ensures that Cn+1 is also the intersection
of an open convex set and a convex polyhedron. Note that the intersection of two open convex
sets is still an open convex set, and that the intersection of two convex polyhedra is also a convex
polyhedron. We can thus combine the properties of C0, C1, . . . , Cn, Cn+1 and conclude that C is
the intersection of an open convex set and a convex polyhedron.

By assumption, the objective value of (P1) cannot go below t, so there is no (x, y0, y, y
′) ∈ C

satisfying y0 = 0, y = 0n, y
′ = 0n′ . By Theorem 1, there exist h0 ∈ R, h ∈ Rn, h′ ∈ Rn′

such that

y0h0 + ⟨y, h⟩+ ⟨y′, h′⟩ > 0 for every (x, y0, y, y
′) ∈ C. (12)

For every (x, y0, y, y
′) ∈ C, we can arbitrarily increase y0 and every coordinate of y without violating

the inequalities (9) and (10). Thus, after increasing y0 and y, we still have (x, y0, y, y
′) ∈ C and

(12) must still be satisfied. This is possible only when h0 ≥ 0 and h ≥ 0.
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Now we prove h0 > 0. By our assumption that (P1) is feasible, there exists (x, y0, y, y
′) ∈ C

such that y = 0 and y′ = 0. Plugging it into (12), we get y0h0 > 0, which implies that h0 ̸= 0.
Since we have shown h0 ≥ 0, we now have h0 > 0.

By scaling h0, h, h
′ using the same positive factor, we can assume without loss of generality that

h0 = 1.
For arbitrary x ∈ E, s ∈ S and ε > 0, let us choose

y0 := f0(x)− t+ ε, and (13)

yi := fi(x) + ε for every i = 1, . . . , n, (14)

y′ := Ax− s. (15)

These choices ensure that (9), (10), and (11) are satisfied, so (x, y0, y, y
′) ∈ C. Plugging (13), (14),

and (15) into (12), we get

f0(x)− t+ ε+
n∑

i=1

hi(fi(x) + ε) + ⟨Ax− s, h′⟩ > 0.

Sending ε → 0 proves (8).

3 Slater’s Condition

The convex optimization problems we get often do not exactly have the form of (P1). Nevertheless,
Theorem 2 still applies as long as they satisfy Slater’s condition, which we discuss in this section.

For example, many optimization problems do not have the strict inequalities in (6). Instead,
they have non-strict inequalities. The domain of x is often not an open convex set E, but rather
is the closure clE of some open convex set E. Similarly, the constraint (7) is often not given by a
set S that is the intersection of an open convex set and a convex polyhedron. Instead, it is given
by the closure clS of such S. In summary, we have the following optimization problem:

minimize
x∈clE

f0(x) (P2)

s.t. fi(x) ≤ 0 for every i = 1, . . . , n, (16)

Ax ∈ clS. (17)

Definition 1 (Slater’s condition). In (P2), assume

1. E ⊆ Rm is a convex open set;

2. S ⊆ Rn′
is the intersection of a convex open set and a convex polyhedron;

3. f0, f1, . . . , fn : clE → R are convex functions defined on clE;

4. A ⊆ Rn′×m is a matrix.

We say (P2) satisfies Slater’s condition if the corresponding problem (P1) is feasible: there exists
x ∈ E that satisfies the two constraints (6) and (7) of (P1).
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Note that Slater’s condition is stronger than the feasibility of (P2), which would correspond to
the existence of x ∈ clE satisfying the two constraints (16) and (17) of (P2).

We have the following Lagrange duality theorem for (P2) under Slater’s condition:

Theorem 3 (Lagrange duality under Slater’s condition). Assume (P2) satisfies Slater’s condition
(as well as the four basic assumptions in Definition 1). For some threshold t ∈ R, assume that the
objective value of (P2) cannot go below t, that is, no x ∈ clE achieves f0(x) < t while satisfying
the constraints (16) and (17). Then there exist h1, . . . , hn ≥ 0 and h′ ∈ Rn′

such that

f0(x) +

n∑
i=1

hifi(x) + ⟨Ax− s, h′⟩ ≥ t for every x ∈ clE and s ∈ clS. (18)

Proof. Our assumption that the objective value of (P2) cannot go below t implies that the objective
value of (P1) also cannot go below t. By Theorem 2, there exist h1, . . . , hn ≥ 0 and h′ ∈ Rn′

such
that (8) holds. That is,

f0(x) +
n∑

i=1

hifi(x) +

(
⟨Ax, h′⟩ − sup

s∈S
⟨s, h′⟩

)
≥ t for every x ∈ E. (19)

Since clS is the closure of S, we have sups∈S⟨s, h′⟩ = sups∈clS⟨s, h′⟩. Thus, to prove (18), it remains
to prove that (19) holds not just for every x ∈ E, but also for every x ∈ clE. Note that the left-
hand side of (19) is a convex function of x ∈ clE, so by Lemma 4 below, (19) must hold for every
x ∈ clE as well.

Lemma 4. Let E be a non-empty convex open set and let f : clE → R be a convex function defined
on the closure clE. For some t ∈ R, if f(x) ≥ t holds for every x ∈ E, then it holds for every
x ∈ clE as well.

Proof. Consider an arbitrary x0 ∈ E. For every x ∈ clE and every α ∈ (0, 1), we have αx + (1 −
α)x0 ∈ E, so

t ≤ f(αx+ (1− α)x0) ≤ αf(x) + (1− α)f(x0).

Taking the limit α → 1 proves f(x) ≥ t.

4 Linear Programming Duality

As an application of the Lagrange duality theorems, we prove the (strong) duality of linear pro-
gramming (Theorem 5). For two vectors u1, u2 ∈ Rn, we say u1 ≤ u2 (resp. u1 ≥ u2) if every
coordinate of u1 is at most (resp. at least) the corresponding coordinate of u2.

Theorem 5. For vectors v ∈ Rm, b ∈ Rn and matrix A ∈ Rn×m, consider the following linear
program:

minimize
x∈Rm

⟨x, v⟩ (P3)

s.t. Ax+ b ≤ 0. (20)
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Assume (P3) is feasible. For some threshold t ∈ R, assume that the objective value of (P3) cannot
go below t. Then the following LP has a feasible solution h ∈ Rn achieving objective value at least
t:

maximize
h∈Rn

⟨b, h⟩ (D3)

s.t. ATh+ v = 0, (21)

h ≥ 0. (22)

Proof. We start by writing (P3) in the form of (P1). Specifically, let us define E = Rm, S = {s ∈
Rn : s+ b ≤ 0}. Now (P3) is equivalent to

minimize
x∈E

⟨x, v⟩ (P3’)

s.t. Ax ∈ S. (23)

Note that E is an open convex set and S is a convex polyhedron, so the regularity assumptions of
Theorem 2 are satisfied. Therefore, there exists h ∈ Rn such that

⟨x, v⟩+
(
⟨Ax, h⟩ − sup

s∈S
⟨s, h⟩

)
≥ t for every x ∈ Rm. (24)

The above implies that sups∈S⟨s, h⟩ < +∞. By the definition of S, for every s ∈ S, we can reduce
each of its coordinates arbitrarily and the result still belongs to S. Therefore, sups∈S⟨s, h⟩ < +∞
implies h ≥ 0. Now we have sups∈S⟨s, h⟩ = −⟨b, h⟩. Thus (24) becomes

⟨x, v⟩+ ⟨Ax, h⟩+ ⟨b, h⟩ ≥ t for every x ∈ Rm,

or equivalently,
⟨x,ATh+ v⟩+ ⟨b, h⟩ ≥ t for every x ∈ Rm.

Since x ∈ Rm can be arbitrary, the above inequality holds only when ATh + v = 0. This proves
that h is a feasible solution to (D3) achieving objective value at least t.

Remark 3. We say (D3) is the dual of (P3), and conversely (P3) is the primal of (D3). For
example, the dual of (P0) is

maximize
h1,h2∈R

2h1 − 3h2 (D0)

s.t. h1 − 2h2 = −3, (25)

− 3h1 + 5h2 = −7, (26)

h1, h2 ≥ 0. (27)

The optimal solution to (D0) is h1 = 29, h2 = 16. Note that this is in fact the unique feasible
solution to (D0), but in general, not every dual LP has a unique feasible solution.

Remark 4. In Theorem 5, we assume that (P3) is feasible. This assumption is necessary. Consider
the following infeasible LP:

minimize
x1,x2∈R

x2

s.t. x1 ≤ 0,

− x1 ≤ −1,

x2 ≤ 0.
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Since it is infeasible, for an arbitrary t ∈ R, its objective value cannot go below t. However, the
corresponding dual problem is also infeasible, so in particular, it cannot achieve objective value at
least t:

maximize
h1,h2,h3∈R

h2

s.t. h1 − h2 = 0,

h3 = −1,

h1, h2, h3 ≥ 0.

5 Semidefinite Programming Duality

As another application of Lagrange duality, we prove the (strong) duality of semidefinite program-
ming under Slater’s condition (Theorem 6).

Theorem 6. Given matrices V,A1, . . . , An ∈ Rm×m and a vector b = (b1, . . . , bn) ∈ Rn, consider
the following semidefinite program

minimize
X∈Rm×m

⟨X,V ⟩ (P4)

s.t. ⟨X,Ai⟩+ bi = 0 for every i = 1, . . . , n, (28)

X ⪰ 0.

Assume the program satisfies Slater’s condition: there exists X ≻ 0 (not just X ⪰ 0) such that
constraint (28) is satisfied. For some threshold t ∈ R, assume that the objective value of (P4) cannot
go below t. Then the following semi-definite program has a feasible solution h = (h1, . . . , hn) ∈ Rn

achieving objective value at least t:

maximize
h=(h1,...,hn)∈Rn

⟨b, h⟩ (D4)

s.t.
n∑

i=1

hiAi + V ⪯ 0.

Proof. We start by writing (P4) in the form of (P2). Specifically, we define E := {X ∈ Rm×m :
X ≻ 0} and S := {−b}. We have clE = {X ∈ Rm×m : X ⪰ 0} and clS = S. Now (P4) can be
equivalently written as

minimize
X∈clE

⟨X,V ⟩ (P4’)

s.t. (⟨X,A1⟩, . . . , ⟨X,An⟩) ∈ clS.

It is easy to verify that E is an open convex set and S is a convex polyhedron. Therefore, the
assumptions of Theorem 3 are satisfied. By Theorem 3, there exists h = (h1, . . . , hn) ∈ Rn such
that

⟨X,V ⟩+

(
n∑

i=1

hi⟨X,Ai⟩ − sup
s∈S

⟨s, h⟩

)
≥ t for every X ⪰ 0. (29)
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By our definition of S = {−b}, we have sups∈S⟨s, h⟩ = −⟨b, h⟩. Thus (29) becomes

⟨X,V ⟩+
n∑

i=1

hi⟨X,Ai⟩+ ⟨b, h⟩ ≥ t for every X ⪰ 0,

or equivalently, 〈
X,

n∑
i=1

hiAi + V

〉
+ ⟨b, h⟩ ≥ t for every X ⪰ 0.

Since X ⪰ 0 can be arbitrary, the above can hold only when
∑n

i=1 hiAi + V ⪯ 0. Plugging X = 0
into the inequality above yields ⟨b, h⟩ ≥ t. Thus h is a feasible solution to (D4) achieving objective
value at least t.

Remark 5. The Slater’s condition in Theorem 3 cannot be replaced with the weaker assumption
that (P4) is feasible. See a counter example in Anupam Gupta’s notes: https: // www. cs. cmu.

edu/ afs/ cs. cmu. edu/ academic/ class/ 15859-f11/ www/ notes/ lecture12. pdf .
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