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Linear programs (LPs) are a basic form of constrained optimization problems. Consider the
following LP:

minimize 3x1 + Txa (PO)
r1,r2€R

s.t. 1 —3x9 < -2, (1)

— 2x1 + 5r9 < 3. (2)

Let OPT denote the optimal value of this LP. If someone wants us to prove OPT < 10, we just
need to show them the solution 1 = x2 = 1. This solution indeed achieves the desired objective
3x1 + Txo = 10 while satisfying both constraints. But if someone wants us to prove OPT > 10,
what should we do?

Proving OPT > 10 feels more challenging because it corresponds to proving “something does
NOT exist”. It corresponds to proving that there does NOT exist (21, x2) achieving 3x; + 7zo < 10
while satisfying the two constraints. This is a “non-existence” statement, whereas a proof, by
definition, is an “existence” statement (the proof itself is the object that exists).

How do we turn the “non-existence” statement into an “existence” statement? For this specific
LP, we can prove OPT > 10 using the existence of two coefficients h; = 29, ho = 16 satisfying the
following identity:

3x1 + Txo + hl(l‘l —3x9 + 2) + hg(—QCEl + 5x9 — 3) =10 for all x1,z5 € R.

This identity can be verified using simple calculations, and it indeed shows that 3x; + 7z > 10
whenever the two constraints and are satisfied.

Is it always possible to prove the optimum value of an LP in this way? How about convex
optimization problems beyond LP? In this lecture we answer these questions using the theory of
Lagrange duality. In the example above, 1 = 292 = 1 is often termed the optimal primal solution
to the LP, whereas h1 = 29, hy = 16 is the optimal dual solution. The coefficients hq1, ho are also
termed Lagrange multipliers. We will make sense of these terms in this lecture.

1 Core Duality Theorem

The following theorem lies at the core of essentially every Lagrange duality theorem:
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Theorem 1. Let C C R™*™ be a convex set. Suppose the following condition cannot be satisfied
by any x € R™ and y € R™:
(x,y) € C and y=0. (3)

Then there exists a non-zero vector h € R™ such that
(y,h) >0 for every (xz,y) € C. (4)

If in addition C is the intersection of a convex open set O and a convex polyhedron P, then there
exists h € R™ such that
(y,h) >0 for every (z,y) € C. (5)

Proof. Let Z C R™™ be the set of vectors (z,0,) where z € R™ is arbitrary and 0,, € R" is the
zero vector. It is clear that Z is a convex polyhedron. Since condition is not satisfiable, we have
CNZ = (), so by the separating hyperplane theorem, there exists a non-zero vector (hq,h) € R™xR"
such that

(x,h1) + (y,h) > (2,hy) for every (z,y) € C and every z € R™.

Since z € R™ can be arbitrary, the above inequality can only hold when hy = 0,, is the zero vector
in R™. This proves .

When C' is the intersection of a convex open set and a convex polyhedron, we have strict
hyperplane separation: there exists (h1,h) € R™ x R™ such that

(x,h1) + (y,h) > (z,hy) for every (z,y) € C and every z € R™.

Again, we must have h; = 0,,. Thus holds. O

2 Lagrange Duality

We consider a very general convex optimization problem as follows. Let m,n,n’ be nonnegative
integers. Let E C R™, S C R™ be two convex sets and let fo, f1,..., fn : E — R be convex functions
defined on E. Let A € R"*™ be a matrix. These objects define a general convex optimization
problem:

mininmize fo(x) (P1)
st. fi(r) <0 foreveryi=1,...,n, (6)
Az € S. (7)

The main goal of this section is to prove the following duality theorem:

Theorem 2 (Lagrange duality). Assume the following regularity conditions hold in the optimization

problem (P1)):
1. F is a convex open set;

2. S is the intersection of a convex open set and a convex polyhedron.



Assume is feasible, that is, there exists x € E satisfying the constraints @ and . For
some threshold t € R, assume that the objective value of cannot go below t, that is, no
x € E achieves fy(x) < t while satisfying the constraints @ and . Then there exist Lagrange
multipliers hq, ..., hy, >0 and K € R" such that

fo(x) + thfl(ac) + (Ax —s,h/)y >t foreveryx € E and s € S. (8)
i=1

Remark 1. The converse of Theorem@ holds trivially: if there exist hy,...,hy, >0 and h' € R™
such that holds, then the objective value of (P1) cannot go below t. Theorem @ thus finds a
proof for the fact that the optimal objective value of (P1) is at least t.

Remark 2. Note how Theorem[d turns a non-existence statement into an existence statement. It
follows the same spirit as the hyperplane separation theorem and the minimax theorem:

If something doesn’t exist, then something else must exist.

Proof. Let C be the set of vectors (, 5o, y,y') € R™xRxR"xR" satisfying the following conditions
(Where Y= (yb B yn) S Rn)

x € F,
fo(z) —yo <t 9)
file) —y; <0 foreveryi=1,...,n, (10)
Ax —y € S. (11)

We first show that C' can be written as the intersection of an open convex set and a convex
polyhedron. Observe that C' = CyNCiN---NCy NCpyp, where

Co={(z,90,4,¥) ER" x RxR* xR : 2 € E and fo(x) — yo < t},
Ci={(z,90,9,9) € R™ xR x R" xR" :z € E and fi(z) —y; <0} foreveryi=1,...,n,
C(n-i-l - {(xay()vyay/) ERT™ xR xR" XRn/ :A.%'—y/ GS}

It is a standard result that every convex function f : EF — R defined on an open convex set
E C R™ must be continuous. This implies that Cy, C1,...,C, are all open. Also, Cy,C1,...,Cy
are all clearly convex. Since Az — y is a linear function of (z,y’), our assumption that S is the
intersection of an open convex set and a convex polyhedron ensures that C, 1 is also the intersection
of an open convex set and a convex polyhedron. Note that the intersection of two open convex
sets is still an open convex set, and that the intersection of two convex polyhedra is also a convex
polyhedron. We can thus combine the properties of Cy, C1,...,Cy,, Chy1 and conclude that C' is
the intersection of an open convex set and a convex polyhedron.

By assumption, the objective value of cannot go below ¢, so there is no (x,yo,y,y’) € C
satisfying yo = 0,y = 0,,,% = 0,. By Theorem [1] there exist ho € R,h € R”, &’ € R" such that

voho + (y,h) + (', h') > 0 for every (z,y0,y,v’) € C. (12)

For every (x,y0,y,y’) € C, we can arbitrarily increase gy and every coordinate of y without violating
the inequalities @ and . Thus, after increasing yg and y, we still have (z,yo,y,y’) € C and
must still be satisfied. This is possible only when hg > 0 and A > 0.



Now we prove hy > 0. By our assumption that is feasible, there exists (z,v0,y,y) € C
such that y = 0 and 3 = 0. Plugging it into , we get yohg > 0, which implies that hg # 0.
Since we have shown hg > 0, we now have hg > 0.

By scaling hg, h, b’ using the same positive factor, we can assume without loss of generality that
ho = 1.

For arbitrary x € E,s € S and € > 0, let us choose

yo := fo(z) —t+e, and (13)
y; = fi(x) +e foreveryi=1,...,n, (14)
y = Az — s. (15)

These choices ensure that @, , and are satisfied, so (x,yo,v,v’) € C. Plugging , ,
and into , we get

folx) —t+e+ Zhi(fi(x) + &)+ (Azx — s,h') > 0.
=1

Sending € — 0 proves . O

3 Slater’s Condition

The convex optimization problems we get often do not exactly have the form of . Nevertheless,
Theorem 2] still applies as long as they satisfy Slater’s condition, which we discuss in this section.

For example, many optimization problems do not have the strict inequalities in @ Instead,
they have non-strict inequalities. The domain of x is often not an open convex set E, but rather
is the closure cl E of some open convex set E. Similarly, the constraint is often not given by a
set S that is the intersection of an open convex set and a convex polyhedron. Instead, it is given
by the closure cl S of such S. In summary, we have the following optimization problem:

minimize fo(x) (P2)
zecl B

st. fi(z) <0 foreveryi=1,...,n, (16)

Az € clS. (17)

Definition 1 (Slater’s condition). In (P2)), assume
1. E CR™ is a conver open set;
2. S CR" is the intersection of a convex open set and a convex polyhedron;
3. fo, fi,---, fn i cl E — R are convex functions defined on cl E;
4. A CRY ™ js q matriz.

We say (P2)) satisfies Slater’s condition if the corresponding problem (P1|) is feasible: there exists
x € E that satisfies the two constraints @ and of (P1]).



Note that Slater’s condition is stronger than the feasibility of (P2]), which would correspond to
the existence of x € cl E satisfying the two constraints and of (P2).
We have the following Lagrange duality theorem for (P2]) under Slater’s condition:

Theorem 3 (Lagrange duality under Slater’s condition). Assume (P2) satisfies Slater’s condition
(as well as the four basic assumptions in Definition . For some threshold t € R, assume that the
objective value of cannot go below t, that is, no x € cl E achieves fo(x) < t while satisfying
the constraints and . Then there exist hy,. .., hy >0 and k' € R" such that

fo(x) + Zhifi(m) + (Az — 8,0y >t for everyx € clE and s € cl S. (18)
i=1

Proof. Our assumption that the objective value of ([P2]) cannot go below ¢ implies that the objective
value of (P1]) also cannot go below t. By Theorem |2 there exist hy,...,h, > 0 and A’ € R™ such
that holds. That is,

fo(z) + Zn: hifi(z) + <(Ax, h'y — sup(s, h’)) >t for every x € E. (19)
i—1 ses

Since ¢l S is the closure of S, we have sup,cg(s, ') = supye (s, 1'). Thus, to prove (18), it remains
to prove that holds not just for every x € E, but also for every z € cl E. Note that the left-
hand side of is a convex function of z € cl E, so by Lemma [4| below, must hold for every
x € cl E as well. O

Lemma 4. Let E be a non-empty convex open set and let f : cl E — R be a convex function defined
on the closure cl E. For some t € R, if f(x) > t holds for every x € E, then it holds for every
z €clFE as well.

Proof. Consider an arbitrary zg € E. For every x € cl E and every a € (0,1), we have ax + (1 —
a)xg € E, so
t < flaz+ (1 —a)zo) < af(x) + (1 —a)f(zo).

Taking the limit « — 1 proves f(x) > t. O

4 Linear Programming Duality

As an application of the Lagrange duality theorems, we prove the (strong) duality of linear pro-
gramming (Theorem . For two vectors ui,up € R™, we say u; < wug (resp. uy > wug) if every
coordinate of uy is at most (resp. at least) the corresponding coordinate of us.

Theorem 5. For vectors v € R"™ b € R" and matrix A € R™" ™ consider the following linear
program.:

o P
minimize (x,v) (P3)
st. Az+b<0. (20)



Assume (P3)) is feasible. For some threshold t € R, assume that the objective value of (P3| cannot
go below t. Then the following LP has a feasible solution h € R™ achieving objective value at least
t:

- D
maximize (b, h) (D3)
st. ATh+v=0, (21)

h> 0. (22)

Proof. We start by writing (P3)) in the form of (P1). Specifically, let us define E =R™, S = {s €
R™: s+ b < 0}. Now (P3) is equivalent to

minimize (x,v) (P3’)
st. Az eS. (23)

Note that F is an open convex set and S is a convex polyhedron, so the regularity assumptions of
Theorem [2] are satisfied. Therefore, there exists h € R™ such that

(x,v) + <<Ax, h) — sup(s, h)) >t for every x € R™. (24)
seS

The above implies that sup,cg(s, h) < +00. By the definition of S, for every s € S, we can reduce
each of its coordinates arbitrarily and the result still belongs to S. Therefore, sup,cg(s, h) < 400
implies A > 0. Now we have sup,cg(s, h) = —(b, h). Thus becomes

(x,v) + (Az,h) + (b,h) >t for every z € R™,

or equivalently,
(x,ATh4+v) + (b,h) >t for every z € R™.

Since € R™ can be arbitrary, the above inequality holds only when ATh 4+ v = 0. This proves
that h is a feasible solution to (D3| achieving objective value at least ¢. O

Remark 3. We say (D3) is the dual of (P3), and conversely (P3) is the primal of (D3)). For
example, the dual of (PO)) is

mhe})’(}grel]ige 2hy — 3he (DO)
st. i —2hy = —3, (25)

— 3hy + Bhy = 7, (26)

hy, ha > 0. (27)

The optimal solution to is h1 = 29,ho = 16. Note that this is in fact the unique feasible
solution to , but in general, not every dual LP has a unique feasible solution.

Remark 4. In Theorem@ we assume that (P3)) is feasible. This assumption is necessary. Consider
the following infeasible LP:

minimize o

r1,L2€R
s.t. a1 <0,
—x1 < -1,
) S 0



Since it is infeasible, for an arbitrary t € R, its objective value cannot go below t. However, the
corresponding dual problem is also infeasible, so in particular, it cannot achieve objective value at
least t:

maximize hy

h1,ha,hz€R
s.t. hi —ho =0,
hs = —1,
hi,ho, hy > 0.

5 Semidefinite Programming Duality

As another application of Lagrange duality, we prove the (strong) duality of semidefinite program-
ming under Slater’s condition (Theorem [6]).

Theorem 6. Given matrices V, Aq,..., A, € R™™ and a vector b = (by,...,b,) € R, consider
the following semidefinite program

inimi X,V P4
minimize (X, V) (P4)
st. (X, A)+b;=0 foreveryi=1,...,n, (28)

X = 0.

Assume the program satisfies Slater’s condition: there exists X = 0 (not just X = 0) such that
constraint is satisfied. For some thresholdt € R, assume that the objective value of cannot
go below t. Then the following semi-definite program has a feasible solution h = (hy, ..., h,) € R"
achieving objective value at least t:

imi b, h D4
ppedmize, - (0,h) (D1)

s.t. Z hiA; +V < 0.
=1

Proof. We start by writing in the form of . Specifically, we define £ := {X € R"™*™ :
X =0} and S := {-b}. We have c|lE = {X € R™*™ : X » 0} and c|S = S. Now can be
equivalently written as

minimize (X, V) (P4’)
XecE
st ((X,A1),...,(X,Ay)) eclS.

It is easy to verify that E is an open convex set and S is a convex polyhedron. Therefore, the
assumptions of Theorem 3| are satisfied. By Theorem |3} there exists h = (hq,...,h,) € R" such
that

(X, V) + <Z hi(X, A;) — sup(s, h>> >t for every X = 0. (29)
i—1 s€S



By our definition of S = {—b}, we have sup,cg(s, h) = —(b, h). Thus becomes

(X, V) + Z}M‘(X, A;) + (b,h) >t for every X =0,
i=1

or equivalently,

<X, > hidi+ V> +(b,h) >t for every X = 0.
i=1
Since X > 0 can be arbitrary, the above can hold only when Y " ; h;A; + V < 0. Plugging X =0

into the inequality above yields (b, h) > t. Thus h is a feasible solution to (D4)) achieving objective
value at least t. O

Remark 5. The Slater’s condition in Theorem [3 cannot be replaced with the weaker assumption
that (P4) is feasible. See a counter example in Anupam Gupta’s notes: |https: //www. cs. cmu.
edu/afs/cs. cmu. edu/academic/ class/16859-f11/wwuw/notes/ lecturel2. pdf.
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