

From Convex Analysis to Learning, Prediction, and Elicitation*

Lecture 5: Saddle Points, KKT Conditions, and Constructive Minimax Theorem

Lunjia Hu

Suppose we have a function $f : X \times Y \rightarrow \mathbb{R}$ that satisfies the minimax theorem:

$$\inf_{x \in X} \sup_{y \in Y} f(x, y) = \sup_{y \in Y} \inf_{x \in X} f(x, y). \quad (1)$$

Let OPT denote the quantity equal to both sides of (1).

Assume the infimum over $x \in X$ on the left side of (1) and supremum over $y \in Y$ on the right side of (1) can be both be attained. That is, there exists an optimal primal solution $x_0 \in X$ such that

$$\sup_{y \in Y} f(x_0, y) = \text{OPT} = \inf_{x \in X} \sup_{y \in Y} f(x, y), \quad (2)$$

and an optimal dual solution $y_0 \in Y$ such that

$$\inf_{x \in X} f(x, y_0) = \text{OPT} = \sup_{y \in Y} \inf_{x \in X} f(x, y). \quad (3)$$

Now suppose someone else gives us $(x_0, y_0) \in X \times Y$ and claims that they satisfy (2) and (3). How do we verify that? We could directly verify (2) and (3), but that may not be easy. Condition (2) states that x_0 minimizes $\sup_{y \in Y} f(x, y)$, so it is an optimality condition on the supremum function $\sup_{y \in Y} f(x, y)$. Similarly, (3) is an optimality condition on the infimum function $\inf_{x \in X} f(x, y)$. Can we verify the optimality of (x_0, y_0) simply using optimality conditions on f itself?

We will show that the answer is “yes”. The optimality conditions (2) and (3) together are equivalent to the condition that (x_0, y_0) is a *saddle point*, which is defined using optimality conditions on f itself (see Definition 1 below).

The notion of saddle point not only allows us to *verify* conditions (2) and (3), but also helps us *construct* points (x_0, y_0) satisfying, or approximately satisfying (2) and (3). In particular, in Section 3 below we use a no-regret online learning algorithm to construct such (x_0, y_0) , giving a constructive proof of the minimax theorem.

*<https://lunjiahu.com/convex-analysis/>

1 Saddle Points

Definition 1. Let X, Y be non-empty sets, and let $f : X \times Y \rightarrow \mathbb{R}$ be an arbitrary function. For $\varepsilon_1, \varepsilon_2 \geq 0$, we say $(x_0, y_0) \in X \times Y$ is an $(\varepsilon_1 + \varepsilon_2)$ -saddle point if

$$\begin{aligned} f(x_0, y_0) - \inf_{x \in X} f(x, y_0) &\leq \varepsilon_1, \\ \sup_{y \in Y} f(x_0, y) - f(x_0, y_0) &\leq \varepsilon_2. \end{aligned}$$

The following two inequality chains are important for understanding the notion of saddle point:

$$\inf_x f(x, y_0) \leq f(x_0, y_0) \leq \sup_y f(x_0, y), \quad (4)$$

$$\inf_x f(x, y_0) \leq \sup_y \inf_x f(x, y) \leq \inf_x \sup_y f(x, y) \leq \sup_y f(x_0, y). \quad (5)$$

These inequality chains imply the following two theorems:

Theorem 1. Let X, Y be non-empty sets, and let $f : X \times Y \rightarrow \mathbb{R}$ be an arbitrary function. Suppose $(x_0, y_0) \in X_0 \times Y_0$ is an ε -saddle point for some $\varepsilon \geq 0$. Then

$$\sup_{y \in Y} f(x_0, y) - \inf_{x \in X} \sup_{y \in Y} f(x, y) \leq \varepsilon, \quad (\text{Primal optimality of } x_0)$$

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) - \inf_{x \in X} f(x, y_0) \leq \varepsilon, \quad (\text{Dual optimality of } y_0)$$

$$\inf_{x \in X} \sup_{y \in Y} f(x, y) - \sup_{y \in Y} \inf_{x \in X} f(x, y) \leq \varepsilon. \quad (\text{Approximate minimax condition})$$

Theorem 2. Let X, Y be non-empty sets, and let $f : X \times Y \rightarrow \mathbb{R}$ be an arbitrary function. For an error bound $\varepsilon \geq 0$, suppose f satisfies the following approximate minimax condition:

$$\inf_{x \in X} \sup_{y \in Y} f(x, y) \leq \sup_{y \in Y} \inf_{x \in X} f(x, y) + \varepsilon.$$

Suppose $x_0 \in X$ and $y_0 \in Y$ are approximately optimal primal and dual solutions within error $\varepsilon_1, \varepsilon_2 \geq 0$:

$$\sup_{y \in Y} f(x_0, y) - \inf_{x \in X} \sup_{y \in Y} f(x, y) \leq \varepsilon_1,$$

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) - \inf_{x \in X} f(x, y_0) \leq \varepsilon_2.$$

Then (x_0, y_0) is an $(\varepsilon + \varepsilon_1 + \varepsilon_2)$ -saddle point.

2 KKT Conditions

Consider the following general optimization problem specified by a domain $E \subseteq \mathbb{R}^m$, functions $f_i : E \rightarrow \mathbb{R}$ for $i = 0, \dots, n$, a matrix $A \subseteq \mathbb{R}^{n' \times m}$, and a set $S \subseteq \mathbb{R}^{n'}$:

$$\underset{x \in E}{\text{minimize}} \quad f_0(x) \quad (\text{P1})$$

$$\text{s.t.} \quad f_i(x) \leq 0 \quad \text{for every } i = 1, \dots, n, \quad (6)$$

$$Ax \in S. \quad (7)$$

The Lagrangian L of the optimization problem is a function of $(x, s, h, h') \in E \times S \times \mathbb{R}_{\geq 0}^n \times \mathbb{R}^{n'}$:

$$L(x, s; h, h') := f_0(x) + \sum_{i=1}^n h_i f_i(x) + \langle Ax - s, h' \rangle. \quad (8)$$

Suppose there exists $x_0 \in E$ that attains the optimal objective value OPT of (P1) while satisfying the two constraints (6) and (7). This is equivalent to the following condition, where we define $s_0 := Ax_0$:

$$\sup_{(h, h') \in \mathbb{R}_{\geq 0}^n \times \mathbb{R}^{n'}} L(x_0, s_0; h, h') \leq \text{OPT}. \quad (9)$$

Lagrange duality is the following condition: there exists $(h_0, h') \in \mathbb{R}_{\geq 0}^n \times \mathbb{R}^{n'}$ such that

$$\inf_{(x, s) \in E \times S} L(x, s; h_0, h'_0) \geq \text{OPT}. \quad (10)$$

If (9) and (10) both hold, then $(x_0, s_0; h_0, h'_0)$ is a 0-saddle point and both (9) and (10) become equalities. This is because all inequalities below must be equalities:

$$0 \leq \sup_{h, h'} L(x_0, s_0; h, h') - \inf_{x, s} L(x, s; h_0, h'_0) \leq \text{OPT} - \text{OPT} = 0.$$

In particular, by (5), the minimax theorem holds for L :

$$\sup_{h, h'} \inf_{x, s} L(x, s; h, h') = \inf_{x, s} \sup_{h, h'} L(x, s; h, h') = \text{OPT}. \quad (11)$$

The following theorem is a direct corollary of the inequality chain (4):

Theorem 3 (KKT condition). *Consider the Lagrangian L (defined in Equation (8)) of the optimization problem (P1). For every $(x_0, s_0, h_0, h'_0) \in E \times S \times \mathbb{R}_{\geq 0}^n \times \mathbb{R}^{n'}$, the following two statements are equivalent:*

1. *There exists $\text{OPT} \in \mathbb{R}$ such that (9) and (10) both hold (in which case the value of OPT is given by (11), and the two inequalities (9) and (10) both become equalities).*
2. *(x_0, s_0, h_0, h'_0) satisfies the following saddle-point condition (i.e., the KKT conditions):*

$$L(x_0, s_0; h_0, h'_0) = \min_{x, s} L(x, s; h_0, h'_0), \quad (12)$$

$$L(x_0, s_0; h_0, h'_0) = \max_{h, h'} L(x_0, s_0; h, h'). \quad (13)$$

The second KKT condition (13) can be simplified to the following equivalent form: for every $i = 1, \dots, n$,

$$\begin{aligned} (h_0)_i > 0 &\implies f_i(x_0) = 0, & (\text{Complementary slackness}) \\ f_i(x_0) &\leq 0 \text{ and } Ax_0 = s_0. & (\text{Primal feasibility}) \end{aligned}$$

3 Constructive Minimax Theorem from No-Regret Learning

Theorem 1 allows us to prove that a function f satisfies the approximate minimax condition by showing the existence of a saddle point. We prove Lemma 4 below which allows us to construct a saddle point from two sequences satisfying a low-regret condition (14). Combining these two results, we can prove that a function f satisfies the approximate minimax condition by constructing low-regret sequences. This leads to *constructive* proofs of the minimax theorem (see the proof of Theorem 5 below) in contrast to the *non-constructive* proofs we have seen in Lecture 2.

Lemma 4 (Saddle point from no-regret sequences). *Let $f : X \times Y \rightarrow \mathbb{R}$ be a convex-concave function. Let $x_1, \dots, x_T \in X$ and $y_1, \dots, y_T \in Y$ be two sequences satisfying the following assumption:*

$$\sup_{y \in Y} \frac{1}{T} \sum_{t=1}^T f(x_t, y) - \varepsilon_2 \leq \frac{1}{T} \sum_{t=1}^T f(x_t, y_t) \leq \inf_{x \in X} \frac{1}{T} \sum_{t=1}^T f(x, y_t) + \varepsilon_1. \quad (14)$$

Then (\bar{x}, \bar{y}) is an $(\varepsilon_1 + \varepsilon_2)$ -saddle point, where $\bar{x} := \frac{1}{T} \sum_{t=1}^T x_t$ and $\bar{y} := \frac{1}{T} \sum_{t=1}^T y_t$.

Proof. By the assumption that f is convex-concave, we can apply Jensen's inequality and get

$$\begin{aligned} \inf_{x \in X} \frac{1}{T} \sum_{t=1}^T f(x, y_t) &\leq \inf_{x \in X} f(x, \bar{y}), \\ \sup_{y \in Y} \frac{1}{T} \sum_{t=1}^T f(x_t, y) &\geq \sup_{y \in Y} f(\bar{x}, y). \end{aligned}$$

Plugging these inequality into (14), we get

$$\sup_{y \in Y} f(\bar{x}, y) - \inf_{x \in X} f(x, \bar{y}) \leq \varepsilon_1 + \varepsilon_2. \quad \square$$

We now demonstrate the power of Lemma 4 by giving a *constructive* proof of the following minimax theorem:

Theorem 5. *Let $X, Y \subseteq \mathbb{R}^d$ be compact convex sets. Then*

$$\inf_{x \in X} \sup_{y \in Y} \langle x, y \rangle = \sup_{y \in Y} \inf_{x \in X} \langle x, y \rangle. \quad (15)$$

Theorem 5 is a special case of the minimax theorems we have learned in Lecture 2. However, the proofs we have seen are *non-constructive*, in that they do not directly give us solutions to the primal and dual problems. We now give a constructive proof of Theorem 5 using Theorem 1 and Lemma 4.

Proof of Theorem 5. Consider a sequential game between a learner and an adversary. In each round $t = 1, \dots, T$, the learner chooses $x_t \in X$, and then the adversary chooses $y_t \in Y$. Based on what we learned in the previous lecture, the learner has a strategy that guarantees low regret regardless of the adversary's strategy. Specifically, the learner can ensure that the second inequality in (14) holds with $\varepsilon_1 = O(\sqrt{1/T})$. Now we let the adversary choose y_t as the *best response* to x_t . That is, $y_t := \arg \max_{y \in Y} \langle x_t, y \rangle$. This ensures that (14) holds with $\varepsilon_2 = 0$. By Lemma 4,

(\bar{x}, \bar{y}) is an ε_1 -saddle point.

By Theorem 1,

$$\inf_{x \in X} \sup_{y \in Y} \langle x, y \rangle - \sup_{y \in Y} \inf_{x \in X} \langle x, y \rangle \leq \varepsilon_1 = O\left(\sqrt{1/T}\right).$$

Sending $T \rightarrow +\infty$ proves (15). \square

Remark 1. *In the proof above, y_t is the best response to x_t . This is stronger than the low-regret condition needed in Lemma 4 and allows us to construct a “simpler” saddle point than (\bar{x}, \bar{y}) . In particular, let $t^* := \arg \min_{t=1, \dots, T} f(x_t, y_t)$. We have*

$$\sup_{y \in Y} f(x_{t^*}, y) = f(x_{t^*}, y_t) \leq \frac{1}{T} \sum_{t=1}^T f(x_t, y_t).$$

Our earlier argument shows, for $\varepsilon_1 = O(\sqrt{1/T})$,

$$\frac{1}{T} \sum_{t=1}^T f(x_t, y_t) \leq \inf_{x \in X} \frac{1}{T} \sum_{t=1}^T f(x, y_t) + \varepsilon_1 \leq \inf_{x \in X} f(x, \bar{y}) + \varepsilon_1.$$

Combining the two equations above, we know that (x_{t^*}, \bar{y}) is an ε_1 -saddle point:

$$\sup_{y \in Y} f(x_{t^*}, y) \leq \inf_{x \in X} f(x, \bar{y}) + \varepsilon_1.$$

Remark 2. All our analysis extends to the case where y_t is an approximate best response. That is, for some $\varepsilon_2 > 0$, we have $\langle x_t, y_t \rangle \geq \sup_{y \in Y} \langle x_t, y \rangle - \varepsilon_2$. In this case, (\bar{x}, \bar{y}) and (x_{t^*}, \bar{y}) are both $(\varepsilon_1 + \varepsilon_2)$ -saddle points.