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Suppose we have a function f : X × Y → R that satisfies the minimax theorem:

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y). (1)

Let OPT denote the quantity equal to both sides of (1).
Assume the infimum over x ∈ X on the left side of (1) and supremum over y ∈ Y on the right

side of (1) can be both be attained. That is, there exists an optimal primal solution x0 ∈ X such
that

sup
y∈Y

f(x0, y) = OPT = inf
x∈X

sup
y∈Y

f(x, y), (2)

and an optimal dual solution y0 ∈ Y such that

inf
x∈X

f(x, y0) = OPT = sup
y∈Y

inf
x∈X

f(x, y). (3)

Now suppose someone else gives us (x0, y0) ∈ X × Y and claims that they satisfy (2) and (3).
How do we verify that? We could directly verify (2) and (3), but that may not be easy. Condition (2)
states that x0 minimizes supy∈Y f(x, y), so it is an optimality condition on the supremum function
supy∈Y f(x, y). Similarly, (3) is an optimality condition on the infimum function infx∈X f(x, y).
Can we verify the optimality of (x0, y0) simply using optimality conditions on f itself?

We will show that the answer is “yes”. The optimality conditions (2) and (3) together are equiv-
alent to the condition that (x0, y0) is a saddle point, which is defined using optimality conditions
on f itself (see Definition 1 below).

The notion of saddle point not only allows us to verify conditions (2) and (3), but also helps
us construct points (x0, y0) satisfying, or approximately satisfying (2) and (3). In particular, in
Section 3 below we use a no-regret online learning algorithm to construct such (x0, y0), giving a
constructive proof of the minimax theorem.

∗https://lunjiahu.com/convex-analysis/
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1 Saddle Points

Definition 1. Let X,Y be non-empty sets, and let f : X × Y → R be an arbitrary function. For
ε1, ε2 ≥ 0, we say (x0, y0) ∈ X × Y is an (ε1 + ε2)-saddle point if

f(x0, y0)− inf
x∈X

f(x, y0) ≤ ε1,

sup
y∈Y

f(x0, y)− f(x0, y0) ≤ ε2.

The following two inequality chains are important for understanding the notion of saddle point:

inf
x
f(x, y0) ≤ f(x0, y0) ≤ sup

y
f(x0, y), (4)

inf
x
f(x, y0) ≤ sup

y
inf
x
f(x, y) ≤ inf

x
sup
y

f(x, y) ≤ sup
y

f(x0, y). (5)

These inequality chains imply the following two theorems:

Theorem 1. Let X,Y be non-empty sets, and let f : X×Y → R be an arbitrary function. Suppose
(x0, y0) ∈ X0 × Y0 is an ε-saddle point for some ε ≥ 0. Then

sup
y∈Y

f(x0, y)− inf
x∈X

sup
y∈Y

f(x, y) ≤ ε, (Primal optimality of x0)

sup
y∈Y

inf
x∈X

f(x, y)− inf
x∈X

f(x, y0) ≤ ε, (Dual optimality of y0)

inf
x∈X

sup
y∈Y

f(x, y)− sup
y∈Y

inf
x∈X

f(x, y) ≤ ε. (Approximate minimax condition)

Theorem 2. Let X,Y be non-empty sets, and let f : X ×Y → R be an arbitrary function. For an
error bound ε ≥ 0, suppose f satisfies the following approximate minimax condition:

inf
x∈X

sup
y∈Y

f(x, y) ≤ sup
y∈Y

inf
x∈X

f(x, y) + ε.

Suppose x0 ∈ X and y0 ∈ Y are approximately optimal primal and dual solutions within error
ε1, ε2 ≥ 0:

sup
y∈Y

f(x0, y)− inf
x∈X

sup
y∈Y

f(x, y) ≤ ε1,

sup
y∈Y

inf
x∈X

f(x, y)− inf
x∈X

f(x, y0) ≤ ε2.

Then (x0, y0) is an (ε+ ε1 + ε2)-saddle point.

2 KKT Conditions

Consider the following general optimization problem specified by a domain E ⊆ Rm, functions
fi : E → R for i = 0, . . . , n, a matrix A ⊆ Rn′×m, and a set S ⊆ Rn′

:

minimize
x∈E

f0(x) (P1)

s.t. fi(x) ≤ 0 for every i = 1, . . . , n, (6)

Ax ∈ S. (7)
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The Lagrangian L of the optimization problem is a function of (x, s, h, h′) ∈ E × S × Rn
≥0 × Rn′

:

L(x, s;h, h′) := f0(x) +
n∑

i=1

hifi(x) + ⟨Ax− s, h′⟩. (8)

Suppose there exists x0 ∈ E that attains the optimal objective value OPT of (P1) while satisfying
the two constraints (6) and (7). This is equivalent to the following condition, where we define
s0 := Ax0:

sup
(h,h′)∈Rn

≥0×Rn′
L(x0, s0;h, h

′) ≤ OPT. (9)

Lagrange duality is the following condition: there exists (h0, h
′) ∈ Rn

≥0 × Rn′
such that

inf
(x,s)∈E×S

L(x, s;h0, h
′
0) ≥ OPT. (10)

If (9) and (10) both hold, then (x0, s0;h0, h
′
0) is a 0-saddle point and both (9) and (10) become

equalities. This is because all inequalities below must be equalities:

0 ≤ sup
h,h′

L(x0, s0;h, h
′)− inf

x,s
L(x, s;h0, h

′) ≤ OPT− OPT = 0.

In particular, by (5), the minimax theorem holds for L:

sup
h,h′

inf
x,s

L(x, s;h, h′) = inf
x,s

sup
h,h′

L(x, s;h, h′) = OPT. (11)

The following theorem is a direct corollary of the inequality chain (4):

Theorem 3 (KKT condition). Consider the Lagrangian L (defined in Equation (8)) of the opti-
mization problem (P1). For every (x0, s0, h0, h

′
0) ∈ E×S×Rn

≥0×Rn′
, the following two statements

are equivalent:

1. There exists OPT ∈ R such that (9) and (10) both hold (in which case the value of OPT is
given by (11), and the two inequalities (9) and (10) both become equalities).

2. (x0, s0, h0, h
′
0) satisfies the following saddle-point condition (i.e., the KKT conditions):

L(x0, s0;h0, h
′
0) = min

x,s
L(x, s;h0, h

′
0), (12)

L(x0, s0;h0, h
′
0) = max

h,h′
L(x0, s0;h, h

′). (13)

The second KKT condition (13) can be simplified to the following equivalent form: for every
i = 1, . . . , n,

(h0)i > 0 =⇒ fi(x0) = 0, (Complementary slackness)

fi(x0) ≤ 0 and Ax0 = s0. (Primal feasibility)
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3 Constructive Minimax Theorem from No-Regret Learning

Theorem 1 allows us to prove that a function f satisfies the approximate minimax condition by
showing the existence of a saddle point. We prove Lemma 4 below which allows us to construct
a saddle point from two sequences satisfying a low-regret condition (14). Combining these two
results, we can prove that a function f satisfies the approximate minimax condition by constructing
low-regret sequences. This leads to constructive proofs of the minimax theorem (see the proof of
Theorem 5 below) in contract to the non-constructive proofs we have seen in Lecture 2.

Lemma 4 (Saddle point from no-regret sequences). Let f : X × Y → R be a convex-concave func-
tion. Let x1, . . . , xT ∈ X and y1, . . . , yT ∈ Y be two sequences satisfying the following assumption:

sup
y∈Y

1

T

T∑
t=1

f(xt, y)− ε2 ≤
1

T

T∑
t=1

f(xt, yt) ≤ inf
x∈X

1

T

T∑
t=1

f(x, yt) + ε1. (14)

Then (x̄, ȳ) is an (ε1 + ε2)-saddle point, where x̄ := 1
T

∑T
t=1 xt and ȳ := 1

T

∑T
t=1 yt.

Proof. By the assumption that f is convex-concave, we can apply Jensen’s inequality and get

inf
x∈X

1

T

T∑
t=1

f(x, yt) ≤ inf
x∈X

f(x, ȳ),

sup
y∈Y

1

T

T∑
t=1

f(xt, y) ≥ sup
y∈Y

f(x̄, y).

Plugging these inequality into (14), we get

sup
y∈Y

f(x̄, y)− inf
x∈X

f(x, ȳ) ≤ ε1 + ε2.

We now demonstrate the power of Lemma 4 by giving a constructive proof of the following
minimax theorem:

Theorem 5. Let X,Y ⊆ Rd be compact convex sets. Then

inf
x∈X

sup
y∈Y

⟨x, y⟩ = sup
y∈Y

inf
x∈X

⟨x, y⟩. (15)

Theorem 5 is a special case of the minimax theorems we have learned in Lecture 2. However,
the proofs we have seen are non-constructive, in that they do not directly give us solutions to the
primal and dual problems. We now give a constructive proof of Theorem 5 using Theorem 1 and
Lemma 4.

Proof of Theorem 5. Consider a sequential game between a learner and an adversary. In each round
t = 1, . . . , T , the learner chooses xt ∈ X, and then the adversary chooses yt ∈ Y . Based on what
we learned in the previous lecture, the learner has a strategy that guarantees low regret regardless
of the adversary’s strategy. Specifically, the learner can ensure that the second inequality in (14)
holds with ε1 = O(

√
1/T ). Now we let the adversary choose yt as the best response to xt. That is,

yt := argmaxy∈Y ⟨xt, y⟩. This ensures that (14) holds with ε2 = 0. By Lemma 4,

(x̄, ȳ) is an ε1-saddle point.
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By Theorem 1,

inf
x∈X

sup
y∈Y

⟨x, y⟩ − sup
y∈Y

inf
x∈X

⟨x, y⟩ ≤ ε1 = O
(√

1/T
)
.

Sending T → +∞ proves (15).

Remark 1. In the proof above, yt is the best response to xt. This is stronger than the low-regret
condition needed in Lemma 4 and allows us to construct a “simpler” saddle point than (x̄, ȳ). In
particular, let t∗ := argmint=1,...,T f(xt, yt). We have

sup
y∈Y

f(xt∗ , y) = f(xt∗ , yt) ≤
1

T

T∑
t=1

f(xt, yt).

Our earlier argument shows, for ε1 = O(
√
1/T ),

1

T

T∑
t=1

f(xt, yt) ≤ inf
x∈X

1

T

T∑
t=1

f(x, yt) + ε1 ≤ inf
x∈X

f(x, ȳ) + ε1.

Combining the two equations above, we know that (xt∗ , ȳ) is an ε1-saddle point:

sup
y∈Y

f(xt∗ , y) ≤ inf
x∈X

f(x, ȳ) + ε1.

Remark 2. All our analysis extends to the case where yt is an approximate best response. That
is, for some ε2 > 0, we have ⟨xt, yt⟩ ≥ supy∈Y ⟨xt, y⟩ − ε2. In this case, (x̄, ȳ) and (xt∗ , ȳ) are both
(ε1 + ε2)-saddle points.
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