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Suppose we have a function f: X x Y — R that satisfies the minimax theorem:

inf sup f(x,y) = sup inf f(x,y). 1
zexyegf( y) y@%exf( y) (1)
Let OPT denote the quantity equal to both sides of .

Assume the infimum over x € X on the left side of and supremum over y € Y on the right
side of can be both be attained. That is, there exists an optimal primal solution zg € X such
that

sup f(zo,y) = OPT = inf sup f(z,y), (2)
yey zeX yey

and an optimal dual solution yg € Y such that

inf f(z,y0) = OPT = sup inf f(z,y). (3)
zeX yey 2€X

Now suppose someone else gives us (zg,40) € X x Y and claims that they satisfy and .
How do we verify that? We could directly verify and , but that may not be easy. Condition
states that xp minimizes sup,cy f(z,y), so it is an optimality condition on the supremum function
sup,ey f(x,y). Similarly, is an optimality condition on the infimum function inf,cx f(z,y).
Can we verify the optimality of (z,yo) simply using optimality conditions on f itself?

We will show that the answer is “yes”. The optimality conditions and together are equiv-
alent to the condition that (xg,y0) is a saddle point, which is defined using optimality conditions
on f itself (see Definition (1| below).

The notion of saddle point not only allows us to wverify conditions and , but also helps
us construct points (xg,yo) satisfying, or approximately satisfying and . In particular, in
Section [3| below we use a no-regret online learning algorithm to construct such (zg, o), giving a
constructive proof of the minimax theorem.
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1 Saddle Points

Definition 1. Let X,Y be non-empty sets, and let f : X x Y — R be an arbitrary function. For
e1,62 > 0, we say (xo,yo) € X XY is an (e1 + e2)-saddle point if

f(zo,v0) — ;Q)f( f(z,m0) < e,

sup f(xo,y) — f(x0,%0) < €2.
yey

The following two inequality chains are important for understanding the notion of saddle point:

inf f(z, o) < f(xo,v0) < sup f(xo,y), (4)
inff(a:,yo) < sup 1Ilff($, y) < infsup f(%, y) < sup f(l'(), y) (5)
T y T T oy y

These inequality chains imply the following two theorems:

Theorem 1. Let X,Y be non-empty sets, and let f : X xY — R be an arbitrary function. Suppose
(z0,y0) € Xo X Yy is an e-saddle point for some e > 0. Then

sup f(xo,y) — mf sup f(x,y) <e, (Primal optimality of x¢)
yey X yey
sup inf f(z,y) — inf f(z,y0) < e, (Dual optimality of yg)
yey T€X zeX
inf sup f(z,y) — sup 1nf flz,y) < (Approximate minimax condition)
reX yey erx

Theorem 2. Let X,Y be non-empty sets, and let f : X XY — R be an arbitrary function. For an
error bound € > 0, suppose f satisfies the following approxzimate minimax condition:

1nf sup f(z,y) < sup 1nf flx,y)+¢
yEY y6Y$

Suppose zg € X and yo € Y are approximately optimal primal and dual solutions within error
€1,62 > 0:

sup f(x07y) - ln)f( sup f(xay) < €1,

yey TEX ycYy
f — inf < e
225:32 f(z,y) ;éle(w’y()) <ey

Then (zg,yo) is an (€ + €1 + £2)-saddle point.

2 KKT Conditions

Consider the following general optimization problem specified by a domain £ C R™, functions
fi:E—Rfori=0,...,n, amatrix A C R"*™ and a set S C R"":

minimize fo(x) (P1)
zeE

st. fi(r) <0 foreveryi=1,...,n, (6)

Ax € S. (7)



The Lagrangian L of the optimization problem is a function of (z,s,h,h') € E x S X RY, x R™:

L(z,s;h, 1) == fo(z) + Y hifi(x) + (Ax — s, h). (8)
=1

Suppose there exists xg € E that attains the optimal objective value OPT of while satisfying
the two constraints @ and . This is equivalent to the following condition, where we define
So = AJI()i
sup L(xo, so; h, k') < OPT. (9)
(h,h/)ERZ xR’

Lagrange duality is the following condition: there exists (ho, h') € R%; x R™ such that

inf  L(z,s: ho, hly) > OPT. 10
(ac,s;IGIEXS (-TS 0 0)_ ( )

If @ and both hold, then (xo, so; ho, k() is a 0-saddle point and both @ and become
equalities. This is because all inequalities below must be equalities:

0 < sup L(zo, s0; h, h') — inf L(x, s; ho, h’) < OPT — OPT = 0.
h,h z,s

In particular, by , the minimax theorem holds for L:

supinf L(z, s; h, ') = inf sup L(z, s; h, h') = OPT. (11)
h,h, x,s x,s h,h/

The following theorem is a direct corollary of the inequality chain (4)):

Theorem 3 (KKT condition). Consider the Lagrangian L (defined in Equation ) of the opti-
mization problem (P1)). For every (xo, so, ho, hj) € E xS % R, x R™ | the following two statements
are equivalent:

1. There exists OPT € R such that (9) and both hold (in which case the value of OPT is
given by , and the two inequalities @ and both become equalities).

2. (o, S0, ho, hy) satisfies the following saddle-point condition (i.e., the KKT conditions):
L($0,50§h0ah6) - minL(x,s;ho,h6), (12)
xT,s
L(xo, 503 ho, hy) = max L(wo, so; h, h). (13)
The second KKT condition can be simplified to the following equivalent form: for every
1=1,...,n,

(ho)i > 0= fi(xo) =0, (Complementary slackness)
fi(xg) <0 and Azy = sq. (Primal feasibility)



3 Constructive Minimax Theorem from No-Regret Learning

Theorem (1| allows us to prove that a function f satisfies the approximate minimax condition by
showing the existence of a saddle point. We prove Lemma |4 below which allows us to construct
a saddle point from two sequences satisfying a low-regret condition . Combining these two
results, we can prove that a function f satisfies the approximate minimax condition by constructing
low-regret sequences. This leads to constructive proofs of the minimax theorem (see the proof of
Theorem [5| below) in contract to the non-constructive proofs we have seen in Lecture 2.

Lemma 4 (Saddle point from no-regret sequences). Let f: X XY — R be a convez-concave func-

tion. Let x1,...,x7 € X and y1,...,yr € Y be two sequences satisfying the following assumption:
1 & 1

—eg < — < inf — . 14

SlelgTfot, 62_T;f(xt,yt)_;QXT;JC(%%)—F& (14)

Then (Z,y) is an (1 + €2)-saddle point, where T := % Z;‘FZI ¢ and j = % Zle Yt

Proof. By the assumption that f is convex-concave, we can apply Jensen’s inequality and get

mf—ZfﬂUyt ) < mff(ff ),

zex T

Plugging these inequality into , we get

sup f(Z,y) — 1nf flz,y) <e1+ea. O
yey
We now demonstrate the power of Lemma [4] by giving a constructive proof of the following
minimax theorem:

Theorem 5. Let X,Y C RY pe compact convex sets. Then

inf sup(x,y) = sup inf (z,y). 15

J:EXye)B< Y) ye%ex< Y) (15)

Theorem [5] is a special case of the minimax theorems we have learned in Lecture 2. However,

the proofs we have seen are non-constructive, in that they do not directly give us solutions to the

primal and dual problems. We now give a constructive proof of Theorem [5| using Theorem (1| and
Lemma [l

Proof of Theorem[5 Consider a sequential game between a learner and an adversary. In each round
t=1,...,T, the learner chooses x; € X, and then the adversary chooses y; € Y. Based on what
we learned in the previous lecture, the learner has a strategy that guarantees low regret regardless
of the adversary’s strategy. Specifically, the learner can ensure that the second inequality in (14))
holds with e; = O(y/1/T). Now we let the adversary choose y: as the best response to z;. That is,
Yyt = argmax,cy (4, y). This ensures that holds with e2 = 0. By Lemma

(Z,7) is an e1-saddle point.



By Theorem [T}
inf sup(z,y) — sup m)f((a: y) <ep = <\/1/T) .

zeX yey yeY T€
Sending T" — 400 proves . O
Remark 1. In the proof above, 1y; is the best response to xy. This is stronger than the low-regret

condition needed in Lemma and allows us to construct a “simpler” saddle point than (Z,y). In
particular, let t* := argmin,_y 1 f(x¢,y:). We have

T
1
sup f(ze,y) = f(@ee,9e) < 7 > f(@e, ).
sup f( ( N
Our earlier argument shows, for e; = O(y/1/T),
L I T
TZf Ty, Yp) < mf —Zf z,yt) +e1 < mf f(z,y) +er.

t=1

Combining the two equations above, we know that (x4, y) is an e1-saddle point:

sup f(ze,y) < inf f(z,9) +e1.
yey

Remark 2. All our analysis extends to the case where y; is an approximate best response. That
is, for some €2 > 0, we have (T, yr) > supyey (v1,y) — €2. In this case, (,9) and (v1+,y) are both
(e1 + e2)-saddle points.
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