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Lecture 7: Convex Conjugation and Fenchel-Young Divergence

Lunjia Hu

We have seen the Follow-the-Regularized-Leader (FTRL) algorithm for Online Convex Opti-
mization (OCO). Given learner’s domain X, adversary’s strategy space F ⊆ {all functions f : X →
R}, regularizer φ : X → R and learning rate η > 0, FTRL is the following algorithm:

• Initialize g1(x) = 0 for every x ∈ X;

• In each round t = 1, . . . , T ,

1. play
xt ← argmin

x∈X
(φ(x) + gt(x)), (1)

2. observe ft ∈ F , and
3. update gt+1 ← gt + ηft.

We have shown that FTRL achieves the following regret bound: for every x∗ ∈ X,

η ·
T∑
t=1

(ft(xt)− ft(x∗)) = Γφ(x
∗, g1)− Γφ(x

∗, gT+1) +
T∑
t=1

Γφ(xt, gt+1)

≤ Γφ(x
∗, g1) +

T∑
t=1

Γφ(xt, gt+1). (2)

This regret bound is stated using the notion of divergence Γφ we defined in the previous lecture.
A special case of OCO is the experts problem, where X = ∆d and F consists of linear functions

f(x) = ⟨x, y⟩ for y ∈ [−1, 1]d. We claimed in the previous lecture that for this problem, a good
choice of the regularizer φ is the negative Shannon entropy:

φ(x) :=
d∑
i=1

xi lnxi ∈ [− ln d, 0] for every x = (x1, . . . , xd) ∈ ∆d. (3)

This choice bounds the right-hand side of (2) as follows:

Γφ(x
∗, g1) ≤ ln d, (4)

Γφ(xt, gt+1) ≤ η2/2. (5)

∗https://lunjiahu.com/convex-analysis/

1

https://lunjiahu.com/convex-analysis/


Plugging these into (2) and picking the optimal choice of η =
√

2 ln d
T , we get

T∑
t=1

(ft(xt)− ft(x∗)) ≤
ln d

η
+
Tη

2
=
√
2T ln d.

In this lecture, we will dive deep into the reasoning behind the regularizer choice (3) and better
understand the meaning of the two divergence bounds (4) and (5). To achieve this goal, we need
some basic knowledge about convex analysis.

1 Subgradient

Definition 1 (subgradient). Let X ⊆ Rd be a non-empty set. Let φ : X → R be a function on X.
For x ∈ X and y ∈ Rd, we say y is a subgradient of φ at x if

φ(x′)− φ(x) ≥ ⟨x′ − x, y⟩ for every x′ ∈ X,

or equivalently,
⟨x, y⟩ − φ(x) ≥ ⟨x′, y⟩ − φ(x′) for every x′ ∈ X,

or equivalently,
⟨x, y⟩ − φ(x) = max

x′∈X
(⟨x′, y⟩ − φ(x′)). (6)

Theorem 1. Let X ⊆ Rd be an open convex set and let φ : X → R be a convex function. For
every x ∈ X, there exists a subgradient y ∈ Rd of φ at x.

Proof. Define S := {(x, z) ∈ X × R : z > φ(x)}. Since φ is a convex function on a convex domain
X, it is easy to verify that S is a convex set. For every x ∈ X, it is clear that (x, φ(x)) /∈ S, so by
the hyperplane separation theorem, there exists h = (y, v) ∈ Rd × R such that h ̸= 0 and

⟨x, y⟩+ φ(x)v ≥ ⟨x′, y⟩+ z′v for every (x′, z′) ∈ S. (7)

For every (x′, z′) ∈ S, we can arbitrarily increase z′ and result still belongs to S. Thus (7) can
hold only when v ≤ 0. It is also easy to show that v ̸= 0 by contradiction. Indeed, if v = 0, then
(7) implies ⟨x, y⟩ ≥ ⟨x′, y⟩ for some y ̸= 0 and every x′ ∈ X, contradicting the assumption that x
belongs to the open set X.

We have now shown that v < 0 must hold. By scaling all coordinates of h with the same positive
factor, we can assume without loss of generality that v = −1. Plugging it into (7) and taking the
limit z′ → φ(x′), we get

⟨x, y⟩ − φ(x) ≥ ⟨x′, y⟩ − φ(x′) for every x′ ∈ X.

This completes the proof that y is a subgradient of φ at x.
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2 Convex Conjugation

Definition 2 (Convex Conjugation (Legendre Transformation)). Let φ : Rd → R ∪ {±∞} be an
arbitrary function. We define the convex conjugate of φ as the function ψ : Rd → R∪{±∞} where

ψ(y) := sup
x∈Rd

(⟨x, y⟩ − φ(x)) for every y ∈ Rd.

Lemma 2. Let ∥ · ∥ be a norm on Rd and let ∥ · ∥∗ be its dual norm. Then the convex conjugate
of φ(x) = 1

2∥x∥
2 is ψ(y) = 1

2∥y∥
2
∗.

Lemma 3 (Inverse monotonicity of convex conjugation). Let φ1, φ2 : Rd → R∪{±∞} be arbitrary
functions, and let ψ1, ψ2 be their convex conjugates, respectively. Assume φ1(x) ≥ φ2(x) for every
x ∈ Rd. Then ψ1(y) ≤ ψ2(y) for every y ∈ Rd.

Definition 3 (Closed convex function). Let f : Rd → R ∪ {±∞} be an arbitrary function. Its
epigraph is defined as

Ef := {(x, z) ∈ Rd × R : z ≥ f(x)}.

We say f is a closed convex function if Ef is a closed convex set.

Lemma 4. Let φ : Rd → R ∪ {±∞} be an arbitrary function and let ψ be its convex conjugate.
Then ψ is a closed convex function.

Proof. The epigraph Eψ of ψ can be expressed as follows:

Eψ = {(y, z) ∈ Rd × R : z ≥ ⟨x, y⟩ − φ(x) for every x ∈ Rd}.

This means that Eψ =
⋂
x∈Rd Sx, where

Sx := {(y, z) ∈ Rd × R : z ≥ ⟨x, y⟩ − φ(x)}.

It is easy to verify that each Sx is a closed convex set (in fact, it is a half-space, the whole space
Rd, or the empty set ∅), so Eψ =

⋂
x∈Rd Sx is also a closed convex set.

Theorem 5 (Double conjugation). Let φ : Rd → R ∪ {+∞} be a closed convex function and let ψ
be its convex conjugate. Then φ is also the convex conjugate of ψ.

Proof. If φ(x) = +∞ for every x ∈ Rd, then ψ(y) = −∞ for every y ∈ Rd. The theorem holds
trivially in this case. We thus assume φ(x0) ∈ R for some x0 ∈ Rd.

By the assumption that ψ is the convex conjugate of φ, we have

ψ(y) ≥ ⟨x, y⟩ − φ(x) for every x, y ∈ Rd.

Therefore,
φ(x) ≥ ⟨x, y⟩ − ψ(y) for every x, y ∈ Rd.

This means that φ(x) ≥ supy∈Rd(⟨x, y⟩ − ψ(y)) for every x ∈ Rd. It remains to prove the reverse
inequality

φ(x) ≤ sup
y∈Rd

(⟨x, y⟩ − ψ(y)) for every x ∈ Rd. (8)
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To prove (8), it suffices to prove that for every x ∈ Rd and every z < φ(x), it holds that

z ≤ sup
y∈Rd

(⟨x, y⟩ − ψ(y)).

Since z < φ(x), we have (x, z) /∈ Eφ. Since Eφ is a closed convex set, we have strict hyperplane
separation: there exists h = (y, v) ∈ Rd × R and ε > 0 such that

⟨x, y⟩+ zv > ⟨x′, y⟩+ z′v + ε for every (x′, z′) ∈ Eφ. (9)

For every (x′, z′) ∈ Eφ, we can arbitrarily increase z′ and the result still belongs to Eφ. Thus (9)
holds only when v ≤ 0. We divide the rest of the proof into two cases.

Case 1: φ(x) ∈ R. We show that v < 0 must hold. Assume by contradiction that v = 0.
Then (9) implies ⟨x, y⟩ > ⟨x′, y⟩ for every (x′, z′) ∈ Eφ. Since φ(x) ∈ R, we have (x, φ(x)) ∈ Eφ.
Choosing (x′, z′) = (x, φ(x)) ∈ Eφ, we get ⟨x, y⟩ > ⟨x, y⟩, a contradiction.

We have now shown v < 0. By scaling all coordinates of h = (y, v) with the same positive
constant, we can assume without loss of generality that v = −1. Taking z′ → φ(x′) in (9), we get

⟨x, y⟩ − z ≥ sup
x′∈Rd

(⟨x′, y⟩ − φ(x′)) = ψ(y).

Therefore,
z ≤ ⟨x, y⟩ − ψ(y) ≤ sup

y∈Rd

(⟨x, y⟩ − ψ(y)).

Case 2: φ(x) = +∞. Recall our assumption that φ(x0) ∈ R for some x0 ∈ Rd. Pick an
arbitrary z0 ∈ R such that z0 < φ(x0). By our analysis of Case 1, there exists (y0, v0) ∈ Rd × R
such that v0 < 0 and

⟨x0, y0⟩+ z0v0 > ⟨x′, y0⟩+ z′v0 for every (x′, z′) ∈ Eφ. (10)

For α ≥ 0, define y′ := y + αy0 and v′ := v + αv0. Combining (9) and (10), we have

⟨x, y⟩+ zv + α(⟨x0, y0⟩+ z0v0) > ⟨x′, y′⟩+ z′v′ + ε for every (x′, z′) ∈ Eφ. (11)

When α = 0, we have

⟨x, y⟩+ zv + α(⟨x0, y0⟩+ z0v0) = ⟨x, y′⟩+ zv′.

By the continuity of both sides as functions of α, for every sufficiently small α > 0, we have

⟨x, y⟩+ zv + α(⟨x0, y0⟩+ z0v0) < ⟨x, y′⟩+ zv′ + ε. (12)

Combining (11) and (12), we get

⟨x, y′⟩+ zv′ > ⟨x′, y′⟩+ z′v′ for every (x′, z′) ∈ Eφ. (13)

Since v′ = v + αv0 where v ≤ 0 and v0 < 0, we have v′ < 0. By scaling (y′, v′) using a positive
factor, we can assume without loss of generality that v′ = −1 in (13). Taking z′ → φ(x′), we get

⟨x, y′⟩ − z ≥ sup
x′∈Rd

(⟨x′, y′⟩ − φ(x′)) = ψ(y′).

Therefore,
z ≤ ⟨x, y′⟩ − ψ(y′) ≤ sup

y∈Rd

(⟨x, y′⟩ − ψ(y′)).
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3 Fenchel-Young Divergence

Definition 4 (Fenchel-Young Divergence). Let φ,ψ : Rd → R∪ {+∞} be arbitrary functions. For
x, y ∈ Rd, their Fenchel-Young divergence is defined as

Γφ,ψ(x, y) := φ(x) + ψ(y)− ⟨x, y⟩ ∈ R ∪ {+∞}.

We say a function f : Rd → R∪{+∞} is proper if there exists some x0 ∈ Rd such that f(x0) ∈ R
(i.e. f(x0) < +∞). It is easy to show that if φ is a proper function, its convex conjugate ψ satisfies
ψ(y) > −∞ for every y ∈ Rd.

Theorem 6. Let φ : Rd → R∪ {+∞} be an arbitrary proper function. Let ψ : Rd → R∪ {+∞} be
the convex conjugate of φ. Then for every x, y ∈ Rd,

Γφ,ψ(x, y) = sup
x′∈X

(⟨x′, y⟩ − φ(x′))− (⟨x, y⟩ − φ(x))

= (φ(x)− ⟨x, y⟩)− inf
x′∈X

(φ(x′)− ⟨x′, y⟩) (14)

≥ 0.

Moreover, the following two statements are equivalent:

1. Γφ,ψ(x, y) = 0;

2. y is a subgradient of φ at x.

Lemma 7. Let φ : Rd → R ∪ {+∞} be an arbitrary proper function. Let ψ : Rd → R ∪ {+∞}
be the convex conjugate of φ. For a fixed pair (x, y) ∈ Rd × Rd satisfying Γφ,ψ(x, y) = 0, define
functions f, g : Rd → R ∪ {+∞} as follows:

f(x′) := Γφ,ψ(x+ x′, y) for every x′ ∈ Rd,
g(y′) := Γφ,ψ(x, y + y′) for every y′ ∈ Rd.

Then g is the convex conjugate of f .

Proof. For every y′ ∈ Rd,

sup
x′∈Rd

(⟨x′, y′⟩ − f(x′))

= sup
x′∈Rd

(⟨x′, y′⟩ − φ(x+ x′)− ψ(y) + ⟨x+ x′, y⟩)

= sup
x′∈Rd

(⟨x′ + x, y′ + y⟩ − φ(x+ x′))− ψ(y)− ⟨x, y′⟩

= ψ(y + y′)− ψ(y)− ⟨x, y′⟩
= ψ(y + y′) + φ(x)− ⟨x, y + y′⟩ (because φ(x) + ψ(y)− ⟨x, y⟩ = Γφ,ψ(x, y) = 0)

= Γφ,ψ(x, y + y′)

= g(y′).
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4 Strong Convexity and Smoothness

Definition 5 (Strong convexity). Let φ : Rd → R ∪ {+∞} be a proper convex function and let
ψ : Rd → R∪ {+∞} be its convex conjugate. For λ ≥ 0, we say φ is λ-strongly convex w.r.t. norm
∥ · ∥ if for every pair (x, y) ∈ Rd × Rd satisfying Γφ,ψ(x, y) = 0, it holds that

Γφ,ψ(x
′, y) ≥ λ

2
∥x′ − x∥2 for every x′ ∈ Rd,

or equivalently,

φ(x′)− φ(x)− ⟨x′ − x, y⟩ ≥ λ

2
∥x′ − x∥2 for every x′ ∈ Rd.

The definition of smoothness changes the “≥” signs in Definition 5 to “≤” signs:

Definition 6 (Smoothness). Let φ : Rd → R∪{+∞} be a proper convex function and let ψ : Rd →
R ∪ {+∞} be its convex conjugate. For λ ≥ 0, we say φ is λ-smooth w.r.t. norm ∥ · ∥ if for every
pair (x, y) ∈ Rd × Rd satisfying Γφ,ψ(x, y) = 0, it holds that

Γφ,ψ(x
′, y) ≤ λ

2
∥x′ − x∥2 for every x′ ∈ Rd,

or equivalently,

φ(x′)− φ(x)− ⟨x′ − x, y⟩ ≤ λ

2
∥x′ − x∥2 for every x′ ∈ Rd. (15)

If a function φ : Rd → R ∪ {+∞} is λ-smooth, then by (15), it must hold that φ(x) < +∞ for
every x ∈ Rd.

Theorem 8. Let φ,ψ : Rd → R ∪ {+∞} be a pair of mutually conjugate functions. Let ∥ · ∥ be a
norm on Rd and let ∥ · ∥∗ be its dual norm. Then for every λ > 0, the following two statements are
equivalent:

1. φ is λ-strongly convex w.r.t. ∥ · ∥;

2. ψ is (1/λ)-smooth w.r.t. ∥ · ∥∗.

Proof. By Definition 5, the statement that φ is λ-strongly convex w.r.t. ∥ · ∥ is equivalent to the
following statement: for every pair (x, y) ∈ Rd × Rd satisfying Γφ,ψ(x, y) = 0, it holds that

Γφ,ψ(x+ x′, y) ≥ λ

2
∥x′∥2 for every x′ ∈ Rd. (16)

Similarly, by Definition 6, the statement that ψ is (1/λ)-smooth w.r.t. ∥ · ∥∗ is equivalent to the
following statement: for every pair (x, y) ∈ Rd × Rd satisfying Γφ,ψ(x, y) = 0, it holds that

Γφ,ψ(x, y + y′) ≤ 1

2λ
∥y′∥2∗ for every y′ ∈ Rd. (17)

By Lemma 2, the functions λ
2∥x

′∥2 and 1
2λ∥y

′∥2∗ are conjugate functions of each other. By Lemma 7,
the functions Γφ,ψ(x + x′, y) and Γφ,ψ(x, y + y′) are also conjugate functions of each other. Thus
Lemma 3 implies that (16) and (17) are equivalent.
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5 Back to the Experts Problem

Now we explain what exact properties of φ lead to the two divergence bound (4) and (5). We first
show that (5) comes from the strong convexity of φ:

Theorem 9. The negative Shannon entropy φ in (3) is 1-strongly convex in the ℓ1 norm ∥ · ∥1.

Theorem 9 is the famous Pinsker’s Inequality. We omit the proof here.
Let ψ : Rd → R be the convex conjugate of the negative Shannon entropy φ in (3). By

Theorems 8 and 9, we know that ψ is 1-smooth w.r.t. the ℓ∞ norm ∥ ·∥∞. This proves the following
lemma, where an equivalent form of the lemma appeared in the previous lecture:

Lemma 10. Let φ : ∆d → R be the negative Shannon entropy (3), and let ψ : Rd → R be its
convex conjugate. Let (x, z) ∈ ∆d × Rd be a pair satisfying Γφ,ψ(x, z) = 0. Then

Γφ,ψ(x, z
′) ≤ 1

2
∥z − z′∥2∞ for every z′ ∈ Rd.

When we apply FTRL to the experts problem, the functions gt are linear functions of x ∈ ∆d.
We can write gt(x) = −⟨x, zt⟩ for some zt ∈ Rd. By (14), we have

Γφ(x, gt) = φ(x) + gt(x)− inf
x′∈∆d

(φ(x′) + gt(x
′))

= φ(x)− ⟨x, zt⟩ − inf
x′∈∆d

(φ(x′)− ⟨x′, zt⟩)

= Γφ,ψ(x, zt).

In FTRL, we have Γφ,ψ(xt, zt) = Γφ(xt, gt) = 0. Thus the divergence bound (5) follows from
Lemma 10:

Γφ(xt, gt+1) = Γφ,ψ(xt, zt+1) ≤
1

2
∥zt+1 − zt∥2∞ ≤ η2/2.

The last inequality holds because in FTRL, we have zt+1 = zt − ηyt for some yt ∈ [−1, 1]d.
We have shown that (5) comes from the strong convexity of the regularizer φ. Now we show

that (4) comes from the boundedness of φ. Since g1 is the constant zero function,

Γφ(x
∗, g1) = φ(x∗)− inf

x′∈∆d

φ(x′) ≤ sup
x′∈∆d

φ(x′)− inf
x′∈∆d

φ(x′) = ln d.

In summary, the two divergence bounds (4) and (5) hold because φ is both bounded and strongly
convex. In general, if we choose an arbitrary regularizer φ : ∆d → R that is λ-strongly convex and
M -bounded: supx′∈∆d

φ(x′)− infx′∈∆d
φ(x′) ≤M , then we have

Γφ(x
∗, g1) ≤M,

Γφ(xt, gt+1) ≤ η2/(2λ).

The corresponding regret bound we get for the optimal choice of η =
√

2λM
T is

regret ≤ M

η
+
ηT

2λ
=

√
2MT

λ
.

To get the best regret bound, we would like to make M/λ as small as possible. The negative
Shannon entropy is a good regularizer exactly because it makes M/λ small.
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