From Convex Analysis to Learning, Prediction, and Elicitation®
Lecture 7: Convex Conjugation and Fenchel-Young Divergence

Lunjia Hu

We have seen the Follow-the-Regularized-Leader (FTRL) algorithm for Online Convex Opti-
mization (OCO). Given learner’s domain X, adversary’s strategy space F' C {all functions f : X —
R}, regularizer ¢ : X — R and learning rate n > 0, FTRL is the following algorithm:

e Initialize g (z) = 0 for every = € X;

e Ineachround ¢t =1,...,T,

1. play
zy  argmin(p(z) + g:(z)), (1)
zeX
2. observe f; € F, and

3. update g¢4+1 < gt + 1ft.

We have shown that FTRL achieves the following regret bound: for every z* € X

T
n- Z fi(a) r*)) = F«p(ﬂf*agl) - F¢($*79T+1) + Zrcp(%t,gtﬂ)
t=1 t=1
T
<Ty(a®, 1) + Y Ty, gi1)- (2)
t=1

This regret bound is stated using the notion of divergence I', we defined in the previous lecture.

A special case of OCO is the experts problem, where X = Ay and F' consists of linear functions
f(x) = (z,y) for y € [~1,1]%. We claimed in the previous lecture that for this problem, a good
choice of the regularizer ¢ is the negative Shannon entropy:

le Inz; € [-1Ind,0] for every z = (x1,...,24) € Ag. (3)

This choice bounds the right-hand side of as follows:

FW(i*agl) S In da (4)
Ly (me, gr1) < m?/2. (5)
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Plugging these into and picking the optimal choice of n = Q?d, we get

4 Ind T
S (felar) — ))<T+?’7 V2T nd.

t=1

In this lecture, we will dive deep into the reasoning behind the regularizer choice and better
understand the meaning of the two divergence bounds and . To achieve this goal, we need
some basic knowledge about convex analysis.

1 Subgradient

Definition 1 (subgradient). Let X C R? be a non-empty set. Let ¢ : X — R be a function on X.
For x € X and y € R?%, we say y is a subgradient of ¢ at = if

o(2') —(x) > (2’ —x,y) for every 2’ € X,

or equivalently,
(z,y) —o(z) = (2',y) — p(a’) for every 2’ € X,

or equivalently,
(z,y) — p(z) = max((2',y) — o(2)). (6)
r’eX
Theorem 1. Let X C R? be an open convex set and let ¢ : X — R be a convex function. For
every x € X, there exists a subgradient y € R? of ¢ at .

Proof. Define S := {(z,z) € X xR : 2z > ¢(x)}. Since ¢ is a convex function on a convex domain
X, it is easy to verify that S is a convex set. For every z € X, it is clear that (x,o(z)) ¢ S, so by
the hyperplane separation theorem, there exists h = (y,v) € R% x R such that h # 0 and

(,9) + p(x)v > (2, y) + 2'v  for every (2/,2') € S. (7)

For every (2/,2') € S, we can arbitrarily increase 2z’ and result still belongs to S. Thus can
hold only when v < 0. It is also easy to show that v # 0 by contradiction. Indeed, if v = 0, then
implies (z,y) > (2/,y) for some y # 0 and every 2’ € X, contradicting the assumption that z
belongs to the open set X.

We have now shown that v < 0 must hold. By scaling all coordinates of h with the same positive
factor, we can assume without loss of generality that v = —1. Plugging it into and taking the
limit 2" — ¢(2'), we get

(2,9) — o) > (@ ,y) = p(a') for every o’ € X.

This completes the proof that y is a subgradient of ¢ at x. O



2 Convex Conjugation

Definition 2 (Convex Conjugation (Legendre Transformation)). Let ¢ : R? — R U {00} be an
arbitrary function. We define the convex conjugate of ¢ as the function ¢ : R — RU {00} where

P(y) == sup ((z,y) — p(x)) for every y € R%.
zER4

Lemma 2. Let || - || be a norm on R? and let || - ||+ be its dual norm. Then the convex conjugate
of p(z) = ll|* is v(y) = zllyl.

Lemma 3 (Inverse monotonicity of convex conjugation). Let @1, 2 : RY — RU {00} be arbitrary
functions, and let 11,19 be their convex conjugates, respectively. Assume pi(x) > pa(x) for every
x € R Then 1 (y) < ¢a(y) for every y € RY,

Definition 3 (Closed convex function). Let f : R — R U {#+oc} be an arbitrary function. Its
epigraph is defined as
Ef:={(z,2) eR xR : 2> f(x)}.

We say f is a closed convex function if E; is a closed convex set.

Lemma 4. Let ¢ : R = RU {00} be an arbitrary function and let ¢ be its convex conjugate.
Then v is a closed convex function.

Proof. The epigraph Ey, of ¢ can be expressed as follows:
Ey={(y,2) ERY xR : 2> (2,y) — p(z) for every x € R}.
This means that Ey = (), cpa Sz, where
Sy ={(y,2) EREXR: 2> (z,9) — o(z)}.

It is easy to verify that each S, is a closed convex set (in fact, it is a half-space, the whole space
R?, or the empty set 0), so Ey = Nycra Sz is also a closed convex set. ]

Theorem 5 (Double conjugation). Let ¢ : R? — R U {+oc} be a closed conver function and let 1
be its convex conjugate. Then ¢ is also the convex conjugate of 1.

Proof. If p(x) = +oo for every x € R, then ¢(y) = —oo for every y € R%. The theorem holds
trivially in this case. We thus assume ¢(zg) € R for some z € R?.
By the assumption that 1 is the convex conjugate of ¢, we have

W(y) > (z,y) — p(x) for every x,y € R,

Therefore,
p(z) > (,y) —d(y) for every z,y € R”.

This means that ¢(z) > sup,ega({z,y) — ¢(y)) for every z € R% It remains to prove the reverse
inequality

o(x) < suﬂgl(@,y) —(y)) for every x € R, (8)



To prove (), it suffices to prove that for every 2 € R? and every z < o(z), it holds that

z < sup ((z,y) — ¥(y)).
y€ERd

Since z < p(x), we have (z,z) ¢ E,. Since E, is a closed convex set, we have strict hyperplane
separation: there exists h = (y,v) € R? x R and ¢ > 0 such that

(x,y) +2v> (', y) + Zv+e forevery (2/,2) € E,. (9)

For every (a2/,2') € E,, we can arbitrarily increase z’ and the result still belongs to E,. Thus @
holds only when v < 0. We divide the rest of the proof into two cases.

Case 1: ¢(z) € R. We show that v < 0 must hold. Assume by contradiction that v = 0.
Then (9) implies (z,y) > (2/,y) for every (2/,z) € E,. Since ¢(z) € R, we have (z,p(z)) € E,.
Choosing (2, 2') = (z,¢(z)) € E,, we get (x,y) > (z,y), a contradiction.

We have now shown v < 0. By scaling all coordinates of h = (y,v) with the same positive

constant, we can assume without loss of generality that v = —1. Taking 2’ — ¢(2') in @, we get
(z,y) — 2z = sup ((z/,y) — p(2')) = ¥(y).
' eRd
Therefore,

z<(z,y) —¥(y) < s;lﬂgl(@,w —(y))-

Case 2: ¢(x) = +o0o. Recall our assumption that ¢(zg) € R for some zq € R? Pick an
arbitrary zo € R such that zy < ¢(xg). By our analysis of Case 1, there exists (yo,v0) € R? x R
such that vg < 0 and

(w0, yo) + zovo > (', y0) + 2'vg  for every (2/,2') € E,. (10)
For a > 0, define 3/ := y + ayg and v’ := v + avy. Combining @ and , we have
(z,y) + zv + a((zo, yo) + zove) > (&', y') + 2" + & for every (2/,2') € E,. (11)
When o = 0, we have
(z,y) + 2v + a((zo, yo) + 20v0) = (z,y) + 20",

By the continuity of both sides as functions of «, for every sufficiently small o > 0, we have

(z,y) + zv + a((z0,y0) + 20v0) < (z,y) + 20" +e. (12)
Combining and , we get
(z,y") + 20" > (2, ) + 2"V for every (2/,72) € E,. (13)

Since v' = v + avy where v < 0 and vy < 0, we have v" < 0. By scaling (y/,v") using a positive
factor, we can assume without loss of generality that o' = —1 in (13). Taking 2’ — ¢(2'), we get

(z,9) — 2> §1€1£d(<x’,y’> — (') =v(y).

Therefore,
2 < {z,y) — () < sup ((z,¢) — ¥ (). O

yeRd
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3 Fenchel-Young Divergence

Definition 4 (Fenchel-Young Divergence). Let ¢, : R? — RU {400} be arbitrary functions. For
x,y € R?, their Fenchel-Young divergence is defined as

Lou(z,y) = o(x) +9(y) — (z,y) € RU{+oc}.

We say a function f : RY — RU{+o0} is proper if there exists some zo € R? such that f(zo) € R
(i.e. f(xg) < +00). It is easy to show that if ¢ is a proper function, its convex conjugate v satisfies
Y(y) > —oo for every y € RY.

Theorem 6. Let ¢ : RY — R U {400} be an arbitrary proper function. Let ¢ : R4 — RU {+o0} be
the convex conjugate of p. Then for every x,y € R,

Lou(@,y) = sup ((z',y) — o(2')) = ({z,y) — o(2))

r’'eX
= (p(2) = (z,)) = inf (p(z') = (z,y)) (14)
> 0.

Moreover, the following two statements are equivalent:
1. Ty y(x,y) =0;
2. y is a subgradient of ¢ at x.

Lemma 7. Let ¢ : R? — RU {4+o0} be an arbitrary proper function. Let v : R — R U {400}
be the convex conjugate of . For a fived pair (z,y) € R? x R? satisfying Ty (2, y) = 0, define
functions f,g:R? — RU {+o0} as follows:

f(@') =Ty p(x+2a',y) for every 2’ € RY,
9() =Ty y(z,y+y) for every y € R
Then g is the convex conjugate of f.

Proof. For every y' € R?,

sup ((',y') — f(2'))

z/€R4
= §gﬂ1§d(<x’, Y) —p(x+a") —4y) + (z+2',y))
= s;gﬂréd«w’ +x,y +y) — ol +2) —dly) — (z,9)
=Yy+y) —v) — (z,9)
=Py +y) + o) —(z,y+9) (because p(z) + ¥ (y) — (z,y) = Ly y(z,y) = 0)
=Tyup(z,y+y)
=9(y).



4 Strong Convexity and Smoothness

Definition 5 (Strong convexity). Let ¢ : R — R U {+oo} be a proper convex function and let
¥R — RU{+o0} be its conver conjugate. For X\ > 0, we say ¢ is A\-strongly convex w.r.t. norm
|- || if for every pair (z,y) € R x R? satisfying Lyu(x,y) =0, it holds that

A
Loz, y) > §Hx’ —z|?  for every &’ € RY,
or equivalently,
A
p(x') = p(x) = (2" —z,y) > 5“:13’ —z|?  for every 2’ € R%.

The definition of smoothness changes the “>” signs in Definition [5[to “<” signs:

Definition 6 (Smoothness). Let o : R? — RU{+00} be a proper convex function and let ¢ : R —
R U {+o0} be its convex conjugate. For X > 0, we say ¢ is A\-smooth w.r.t. norm || - || if for every
pair (z,y) € R x RY satisfying Lyy(x,y) =0, it holds that

Loz y) < %Hx’ —xz||?  for every &’ € RY,
or equivalently,
o) —p(x) — (' —x,y) < %H:U' —z||?  for every &' € RY. (15)
If a function ¢ : R? — R U {400} is A-smooth, then by (IF]), it must hold that ¢(z) < +oo for

every x € R,

Theorem 8. Let o, : R? — RU {400} be a pair of mutually conjugate functions. Let || - || be a
norm on R? and let || - ||« be its dual norm. Then for every X > 0, the following two statements are
equivalent:

1. @ is A\-strongly convex w.r.t. || - ||;

2. 1 is (1/X)-smooth w.r.t. || - ||«

Proof. By Definition |5, the statement that ¢ is A-strongly convex w.r.t. || - || is equivalent to the
following statement: for every pair (z,y) € R? x R? satisfying 'y, s (z,y) = 0, it holds that
A
Loyplz+a,y) > §||a;’H2 for every 2’ € R% (16)
Similarly, by Definition [6] the statement that ¢ is (1/\)-smooth w.r.t. || - ||« is equivalent to the
following statement: for every pair (z,y) € R x R? satisfying I'yy(x,y) =0, it holds that
1
Coy(@y+y) < oo IWIE forevery yf € R (17)

By Lemma the functions 3 ||2’||? and 5x||/||2 are conjugate functions of each other. By Lemma
the functions T'y (2 + 2’,y) and 'y y(x,y + y') are also conjugate functions of each other. Thus

Lemma implies that and are equivalent. ]



5 Back to the Experts Problem

Now we explain what exact properties of ¢ lead to the two divergence bound and . We first
show that comes from the strong convexity of ¢:

Theorem 9. The negative Shannon entropy ¢ in is 1-strongly convex in the {1 norm || - 1.

Theorem [J is the famous Pinsker’s Inequality. We omit the proof here.

Let ¢ : R? — R be the convex conjugate of the negative Shannon entropy ¢ in . By
Theorems [§]and [9] we know that 1 is 1-smooth w.r.t. the {5 norm || -||oo. This proves the following
lemma, where an equivalent form of the lemma appeared in the previous lecture:

Lemma 10. Let ¢ : Ay — R be the negative Shannon entropy , and let ¢ : R? — R be its
convex conjugate. Let (z,z) € Ag x R? be a pair satisfying Ty y(z,2) = 0. Then

1
Loyl 2') < §||z — 2|2, for every 2’ € R,

When we apply FTRL to the experts problem, the functions g; are linear functions of x € Ag.
We can write g;(z) = —(z, ) for some z, € R%. By (I4), we have

Lo(@,9) = p(@) + gu(@) = inf (p(2) + gu(2))

= () = {z,2) = _inf (p(a") - (@', )

=Ty (T, 2).
In FTRL, we have 'y, y(2¢,2:) = Iy(xt,9¢) = 0. Thus the divergence bound follows from
Lemma 10 .
Lot gt41) = Ty, 2641) < §Hzt+1 — z||%, < n?/2.
The last inequality holds because in FTRL, we have 21 = z; — ny; for some y; € [—1,1]%.

We have shown that comes from the strong convexity of the regularizer . Now we show
that comes from the boundedness of ¢. Since g7 is the constant zero function,

Ty(z%,91) = p(z*) — inf (') < sup p(z') — inf ¢(2’) =1Ind.
YA €A €Ny

In summary, the two divergence bounds and hold because ¢ is both bounded and strongly
convex. In general, if we choose an arbitrary regularizer ¢ : Ay — R that is A-strongly convex and
M-bounded: sup,ca, p(z') —infpren, p(z') < M, then we have

Fw(x*agl) < M7
Fso(xtagt+1) < 772/(2/\)-

The corresponding regret bound we get for the optimal choice of n = Q’\TM is
(< M N nT 2MT
regret < — 4+ — =
R ) )

To get the best regret bound, we would like to make M/A as small as possible. The negative
Shannon entropy is a good regularizer exactly because it makes M /X small.
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