
From Convex Analysis to Learning, Prediction, and Elicitation∗

Lecture 8: Regularity Lemma

Lunjia Hu

As a powerful application of the no-regret online learning framework, in this lecture we prove
the Trevisan-Tulsiani-Vadhan regularity lemma [TTV09], a.k.a., Frieze-Kannan weak regularity
lemma.

Suppose we have a class F consisting of functions f : X → [−1, 1] on an arbitrary domain X.
To understand the regularity lemma, we should think of these functions as “simple” functions, or
“low-complexity” functions. We also have another ground-truth function g∗ : X → [−1, 1] that may
have “high-complexity”.

At a high level, the regularity lemma states that we can find a model function g : X → [−1, 1]
such that

1. (Low complexity) g has complexity roughly as low as the functions in F ;

2. (Indistinguishability) g is indistinguishable from g∗ w.r.t. F .

Theorem 1 (TTV Regularity). Let X be an arbitrary domain, and let D be a probability distri-
bution on X. Let F be a finite class of functions f : X → [−1, 1]. For every ground-truth function
g∗ : X → [−1, 1] and every ε ∈ (0, 1/2), there exists a model g : X → [−1, 1] with the following
properties:

1. (Low complexity) There exist T = O(1/ε2) functions f1, . . . , fT ∈ F and an O(T )-time
post-processing algorithm A such that for every x ∈ X, A(f1(x), . . . , fT (x)) correctly computes
g(x).

2. (Indistinguishability) For every f ∈ F ,

|Ex∼D[(g(x)− g∗(x))f(x)]| ≤ ε.

1 Proof of TTV Regularity via No-Regret Online Learning

We consider an online learning problem with T rounds, where in each round, the learner chooses
gt : X → [−1, 1], and the adversary reveals ft ∈ F ∪ (−F ). The loss incurred by the learner in
round t is

L(gt, ft) := Ex∼D[(gt(x)− g∗(x))ft(x)].

∗https://lunjiahu.com/convex-analysis/
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Suppose the learner uses an algorithm that guarantees average regret at most ε (regardless of the
adversary’s actions f1, . . . , fT ):

1

T

T∑
t=1

L(gt, ft) ≤ inf
g′:X→[−1,1]

1

T

T∑
t=1

L(g′, ft) + ε. (1)

Note that L(g∗, f) = 0 for every f ∈ F , so we have

inf
g′:X→[−1,1]

1

T

T∑
t=1

L(g′, ft) ≤
1

T

T∑
t=1

L(g∗, ft) = 0.

Combining the two inequalities above, we get

1

T

T∑
t=1

L(gt, ft) ≤ ε.

Thus there exists t∗ ∈ {1, . . . , T} such that

L(gt∗ , ft∗) ≤ ε. (2)

Note that this holds regardless of the adversary’s strategy of choosing f1, . . . , fT . Now we let the
adversary to use the “best response” strategy:

ft := argmax
f∈F∪(−F )

L(gt, f) for every t = 1, . . . , T .

Plugging it into (2), we get
max

f∈F∪(−F )
L(gt∗ , f) ≤ ε.

This proves that gt∗ satisfies the indistinguishability requirement of Theorem 1.
It remains to show that there exists an algorithm for the learner that achieves the low-regret

guarantee (1) while ensuring that gt∗ has low complexity. Using the definition of L, inequality (1)
is equivalent to

T∑
t=1

Ex∼D[gt(x)ft(x)]− inf
g′:X→[−1,1]

T∑
t=1

Ex∼D[g′(x)ft(x)] ≤ εT.

A sufficient condition for the condition above is that for every x ∈ X,

T∑
t=1

gt(x)ft(x)− inf
g′(x)∈[−1,1]

T∑
t=1

g′(x)ft(x) ≤ εT. (3)

It thus suffices to achieve the regret guarantee (3) for every fixed x ∈ X. This can be done via
a standard (one-dimensional) FTRL algorithm with regularizer φ : [−1, 1] → R and learning rate
η > 0:

For every x ∈ X:

• Initialize h1(x) = 0;
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• In each round t = 1, . . . , T ,

1. play
gt(x)← argmin

v∈[−1,1]
(φ(v)− v · ht(x)), (4)

2. observe ft(x) ∈ [−1, 1], and
3. update ht+1(x)← ht(x)− ηft(x).

We simply choose φ to be the quadratic function φ(v) = v2/2. This allows us to compute (4) easily:
for every z ∈ R,

argmin
v∈[−1,1]

(φ(v)− vz) = proj[−1,1](z) =


z, if z ∈ [−1, 1];
−1, if z < −1;
1, if z > 1.

Therefore, when t is small, gt always has low complexity relative to F :

gt(x) = argmin
v∈[−1,1]

(φ(v)− v · ht(x)) = proj[−1,1](ht(x)) = proj[−1,1](−η(f1(x) + · · ·+ ft−1(x))).

It remains to prove that we achieve the regret bound (3) in T = O(1/ε2) rounds. It is easy to verify
that φ is 1-strongly convex and has range [0, 1/2] on domain [−1, 1]. From what we have learned
in previous lectures,

η

(
T∑
t=1

gt(x)ft(x)−
T∑
t=1

g′(x)ft(x)

)
≤ Γφ,ψ(g

′(x), h1(x)) +
T∑
t=1

Γφ,ψ(gt(x), ht+1(x))

≤ 1/2 + Tη2/2.

Choosing η = 1/
√
T , we get the regret bound

T∑
t=1

gt(x)ft(x)−
T∑
t=1

g′(x)ft(x) ≤
1

2η
+

Tη

2
=
√
T .

Thus (3) holds for T = O(1/ε2), as desired.

Remark 1 (Early stop). To find the model gt∗, we don’t need to always finish all T = O(1/ε2)
rounds of the FTRL algorithm. We can stop after round t∗ as long as (2) is satisfied.

2 Potential Function Analysis

To be continued.

Structure VS Pseudorandomness Dichotomy.
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