From Convex Analysis to Learning, Prediction, and Elicitation®
Lecture 8: Regularity Lemma

Lunjia Hu

As a powerful application of the no-regret online learning framework, in this lecture we prove
the Trevisan-Tulsiani-Vadhan regularity lemma [TTVQ9], a.k.a., Frieze-Kannan weak regularity
lemma.

Suppose we have a class F' consisting of functions f : X — [—1,1] on an arbitrary domain X.
To understand the regularity lemma, we should think of these functions as “simple” functions, or
“low-complexity” functions. We also have another ground-truth function g* : X — [—1, 1] that may
have “high-complexity”.

At a high level, the regularity lemma states that we can find a model function g : X — [—1,1]
such that

1. (Low complexity) g has complexity roughly as low as the functions in F
2. (Indistinguishability) g is indistinguishable from g* w.r.t. F.

Theorem 1 (TTV Regularity). Let X be an arbitrary domain, and let D be a probability distri-
bution on X. Let F be a finite class of functions f : X — [—1,1]. For every ground-truth function
g*: X — [-1,1] and every € € (0,1/2), there exists a model g : X — [—1,1] with the following
properties:

1. (Low complexity) There exist T = O(1/€?) functions f1,...,fr € F and an O(T)-time
post-processing algorithm A such that for every x € X, A(f1(x),..., fr(x)) correctly computes

9(x).
2. (Indistinguishability) For every f € F,

[Eznpl(9(2) — g% (2)) f(2)]] <e.

1 Proof of TTV Regularity via No-Regret Online Learning

We consider an online learning problem with 7T rounds, where in each round, the learner chooses
gt + X — [—1,1], and the adversary reveals f; € F' U (—F). The loss incurred by the learner in
round ¢ is

L(gs; fr) := Eanp[(g:(x) — g7 (2)) fi(2)].
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Suppose the learner uses an algorithm that guarantees average regret at most ¢ (regardless of the
adversary’s actions f1,..., fr):
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g X—]

IIMH

Note that L(g*, f) = 0 for every f € F, so we have
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Combining the two inequalities above, we get

1 I
=2 Lo i) <
=
Thus there exists t* € {1,...,T} such that

L(ge, frr) < €. (2)

Note that this holds regardless of the adversary’s strategy of choosing fi,..., fr. Now we let the
adversary to use the “best response” strategy:

fi = argmax L(g, f) foreveryt=1,...,T.
fEFU(—F)

Plugging it into (2)), we get
max L(gy, f) <e.
fEFU(-F) (gt f)
This proves that g+ satisfies the indistinguishability requirement of Theorem
It remains to show that there exists an algorithm for the learner that achieves the low-regret
guarantee while ensuring that g~ has low complexity. Using the definition of L, inequality
is equivalent to

T
> Eswplge(@)fi(z)] - inf ZEM fi(@)] < eT.
t=1

g X—[—1,1]

A sufficient condition for the condition above is that for every x € X,

T
Z t(2) fi(z) mf Zg ) <eT. (3)
t=1

z)€e[—1,1]

It thus suffices to achieve the regret guarantee for every fixed x € X. This can be done via
a standard (one-dimensional) FTRL algorithm with regularizer ¢ : [-1,1] — R and learning rate
n > 0O:

For every z € X:

e Initialize hy(z) = 0;



e Ineachround ¢t =1,...,T,

1. play

gi(z) < argmin(p(v) — v - hy(z)), (4)
ve[—-1,1]

2. observe fi(z) € [-1,1], and
3. update hyy1(x)  he(x) — nfi(z).

We simply choose ¢ to be the quadratic function (v) = v?/2. This allows us to compute (4] easily:
for every z € R,

z, if z € [-1,1];
argmin(p(v) —vz) = proji_y 1y(2) = ¢ -1, if 2 < —1;
vel=11] 1, ifz>1.

Therefore, when t is small, g; always has low complexity relative to F":

g¢(x) = al;g[_nllilr]l(@(v) — v hy(z)) = proji_y 1) (he(x)) = projj_1 1y (=n(f1(z) + - - + fi-1(2))).

It remains to prove that we achieve the regret bound in T = O(1/¢?) rounds. It is easy to verify
that ¢ is 1-strongly convex and has range [0,1/2] on domain [—1,1]. From what we have learned
in previous lectures,

T T
U (Z g1(x) fi(x) — Zd(@ft(@) < Tpp(9' (@), h(2) + Y Top(ge(@), haga (@)
t=1

t=1 t=1
<1/2+Tn?/2.

Choosing n = 1/+/T, we get the regret bound

d d 1 Tn
o) i) = 3 @) file) < 5+ 5 =T
t=1 t=1

Thus (3) holds for T = O(1/€?), as desired.

Remark 1 (Early stop). To find the model g, we don’t need to always finish all T = O(1/e?)
rounds of the FTRL algorithm. We can stop after round t* as long as is satisfied.

2 Potential Function Analysis

To be continued.

Structure VS Pseudorandomness Dichotomy.

References

[TTV09] Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and efficiently
simulating every high-entropy distribution. In 2009 24th Annual IEEE Conference on
Computational Complezity, pages 126-136, 2009. URL: https://people.seas.harvard.
edu/~salil/research/regularity-ccc09.pdf}, doi:10.1109/CCC.2009.41.


https://people.seas.harvard.edu/~salil/research/regularity-ccc09.pdf
https://people.seas.harvard.edu/~salil/research/regularity-ccc09.pdf
https://doi.org/10.1109/CCC.2009.41

	Proof of TTV Regularity via No-Regret Online Learning
	Potential Function Analysis

