

From Convex Analysis to Learning, Prediction, and Elicitation*

Lecture 12: Gradient Boosting, AdaBoost

Lunjia Hu

1 Gradient Descent

Fact 1. Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a differentiable function. For every $x \in \mathbb{R}^d$, as $z \in \mathbb{R}^d$ approaches $\mathbf{0}$,

$$f(x + z) - f(x) = \langle z, \nabla f(x) \rangle + o(\|z\|).$$

In particular, if $z = -\alpha \nabla f(x)$ for $\alpha \geq 0$, as α approaches 0^+ ,

$$f(x + z) - f(x) = -\alpha \|\nabla f(x)\|_2^2 + o(\alpha).$$

When $\nabla f(x) \neq \mathbf{0}$ and α is sufficiently small, we have $f(x + z) < f(x)$.

Definition 1. Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a differentiable convex function. We say f is λ -smooth w.r.t. norm $\|\cdot\|$ if for every $x, z \in \mathbb{R}^d$,

$$f(x + z) - f(x) \leq \langle z, \nabla f(x) \rangle + \frac{\lambda}{2} \|z\|^2.$$

Gradient Descent. Suppose f satisfies λ -smoothness w.r.t. the ℓ_2 norm $\|\cdot\|_2$. Choosing $z = -\alpha \nabla f(x)$, we get

$$f(x + z) - f(x) \leq -\alpha \|\nabla f(x)\|_2^2 + \frac{\lambda \alpha^2}{2} \|\nabla f(x)\|_2^2.$$

Choosing $\alpha = \frac{1}{\lambda}$ to minimize the right-hand side, we get

$$f(x + z) - f(x) \leq -\frac{1}{2\lambda} \|\nabla f(x)\|_2^2.$$

2 Gradient Boosting

As we discuss in the previous section, in gradient descent, we choose the update vector z to align with the direction of the negative gradient $-\nabla f(x)$. Sometimes, we don't have full access to the gradient $\nabla f(x)$, but instead have access to some signal $s \in \mathbb{R}^d$ such that $\langle s, \nabla f(x) \rangle \geq w$ for some

*<https://lunjiahu.com/convex-analysis/>

threshold $w > 0$. Assuming f is λ -smooth w.r.t. a general norm $\|\cdot\|$, we choose the update vector $z = -\alpha s$ to align with the direction of $-s$ and get

$$f(x + z) - f(x) \leq -\alpha \langle s, \nabla f(x) \rangle + \frac{\lambda \alpha^2}{2} \|s\|^2 \leq -\alpha w + \frac{\lambda \alpha^2}{2} \|s\|^2.$$

To minimize the right-hand side, we choose $\alpha = \frac{w}{\lambda \|s\|^2}$ and get

$$f(x + z) - f(x) \leq -\frac{w^2}{2\lambda \|s\|^2}.$$

FTRL as gradient boosting. Recall the FTRL algorithm for OLO:

- Initialize $z_1 = \mathbf{0} \in \mathbb{R}^d$;
- In each round $t = 1, \dots, T$,
 1. play

$$x_t \leftarrow \arg \min_{x \in X} (\varphi(x) - \langle x, z_t \rangle), \quad (1)$$

2. observe $y_t \in Y$, and
3. update $z_{t+1} \leftarrow z_t - \eta y_t$.

When we analyze FTRL, we proved the following result:

Lemma 2. *Let $\varphi : X \rightarrow \mathbb{R}$ be a convex function defined on a convex set $X \subseteq \mathbb{R}^d$, and let $\psi : \mathbb{R}^d \rightarrow \mathbb{R}$ be its convex conjugate. Assume ψ is λ -smooth w.r.t. norm $\|\cdot\|$. In the FTRL algorithm above, we have*

$$\begin{aligned} \eta \langle x_t - x^*, y_t \rangle &= \Gamma_{\varphi, \psi}(x^*, z_t) - \Gamma_{\varphi, \psi}(x^*, z_{t+1}) + \Gamma_{\varphi, \psi}(x_t, z_{t+1}) \\ &\leq \Gamma_{\varphi, \psi}(x^*, z_t) - \Gamma_{\varphi, \psi}(x^*, z_{t+1}) + \frac{\lambda \eta^2}{2} \|y_t\|^2. \end{aligned} \quad (2)$$

This lemma can be understood as an instance of gradient boosting. Specifically, the gradient of $\Gamma_{\varphi, \psi}(x^*, z_t)$ as a function of z_t is exactly $x_t - x^*$:

$$\begin{aligned} \nabla_{z_t} \Gamma_{\varphi, \psi}(x^*, z_t) &= \nabla_{z_t} (\varphi(x^*) + \psi(z_t) - \langle x^*, z_t \rangle) \\ &= \nabla_{z_t} \psi(z_t) - x^* \\ &= x_t - x^*. \end{aligned} \quad (\text{because } \Gamma_{\varphi, \psi}(x_t, z_t) = 0 \text{ by (1)})$$

Therefore, if the left-hand side of (2) is positive, we have $\langle y_t, \nabla_{z_t} \Gamma_{\varphi, \psi}(x^*, z_t) \rangle > 0$, so we can reduce $\Gamma_{\varphi, \psi}(x^*, z_t)$ by updating z_t along the direction of $-y_t$. That is why we have the update rule $z_{t+1} \leftarrow z_t - \eta y_t$ in FTRL.

Applying gradient boosting to machine learning. Suppose we have n data points from $X \times \mathbb{R}$: $(x_1, y_1), \dots, (x_n, y_n)$. A model $h : X \rightarrow \mathbb{R}$ corresponds to a vector $\mathbf{h} = (h_1, \dots, h_n) := (h(x_1), \dots, h(x_n))$. The (empirical) loss of this model is

$$L(\mathbf{h}) = \sum_{i=1}^n \ell(h_i, y_i). \quad (3)$$

The gradient of L is

$$\nabla L(\mathbf{h}) = \left(\frac{\partial}{\partial h} \ell(h_1, y_1), \dots, \frac{\partial}{\partial h} \ell(h_n, y_n) \right). \quad (4)$$

Thus, if we can find a signal $\mathbf{s} \in \mathbb{R}^n$ such that $\langle \mathbf{s}, \nabla L(\mathbf{h}) \rangle > 0$, then we can apply gradient boosting to update the current model \mathbf{h} to reduce the loss L . In the next section we will see a famous example of gradient boosting: AdaBoost.

3 AdaBoost

In the most classic version of AdaBoost, the labels y_1, \dots, y_n are binary: $y_i \in \{-1, 1\}$. The loss function is $\ell(h, y) := e^{-yh}$ for $y \in \{-1, 1\}$ and $h \in \mathbb{R}$. By (3),

$$L(\mathbf{h}) = \sum_{i=1}^n e^{-y_i h_i}.$$

By (4),

$$\nabla L(\mathbf{h}) = (e^{-y_1 h_1} (-y_1), \dots, e^{-y_n h_n} (-y_n)).$$

Let $w_i := e^{-y_i h_i}$ be the weight on point (x_i, y_i) . Suppose we have a weak classifier $s : X \rightarrow \{-1, 1\}$ such that its weighted error is below $1/2$:

$$\sum_{i=1}^n w_i \mathbb{I}(s(x_i) \neq y_i) < \frac{1}{2} \sum_{i=1}^n w_i. \quad (5)$$

Note that $\mathbb{I}(s(x_i) \neq y_i) = (1 - y_i s(x_i))/2$, so (5) is equivalent to

$$\sum_{i=1}^n w_i y_i s(x_i) > 0. \quad (6)$$

Define w_{cor} as the sum of w_i where $(x_i) = y_i$ (i.e. $y_i s(x_i) = 1$, or $s(x_i)$ is *correct*), and define w_{mis} as the sum of w_i where $s(x_i) \neq y_i$ (i.e. $y_i s(x_i) = -1$, or $s(x_i)$ makes a *mistake*). Inequality (6) is equivalent to

$$w_{\text{cor}} > w_{\text{mis}}.$$

Define $\mathbf{s} = (s_1, \dots, s_n) := (s(x_1), \dots, s(x_n))$. Inequality (6) is equivalent to $\langle \mathbf{s}, \nabla L(\mathbf{h}) \rangle < 0$. We can thus run gradient boosting to reduce L . That is, for $\alpha \geq 0$, we consider update \mathbf{h} to $\mathbf{h}' = \mathbf{h} + \alpha \mathbf{s}$.

$$L(\mathbf{h} + \alpha \mathbf{s}) = \sum_{i=1}^n w_i e^{-\alpha y_i s_i} = w_{\text{cor}} e^{-\alpha} + w_{\text{mis}} e^{\alpha}.$$

The optimal choice of α that minimizes $L(\mathbf{h} + \alpha\mathbf{s})$ is

$$\alpha = \frac{1}{2} \ln(w_{\text{cor}}/w_{\text{mis}}).$$

For this choice of α , the new loss is

$$L(\mathbf{h} + \alpha\mathbf{s}) = 2\sqrt{w_{\text{cor}}w_{\text{mis}}} < w_{\text{cor}} + w_{\text{mis}} = L(\mathbf{h}).$$

If we additionally assume that $w_{\text{cor}}/w_{\text{mis}} \geq 1 + \varepsilon > 1$, we have $L(\mathbf{h} + \alpha\mathbf{s}) \leq (1 - \Omega(\varepsilon^2))L(\mathbf{h})$. If initially $\mathbf{h} = (0, \dots, 0)$ and $L(\mathbf{h}) = n$, after $O(\varepsilon^{-2} \log n)$ such updates, we will have $L(\mathbf{h}) < 1$, which implies that $\text{sign}(h_i) = y_i$ for every $i = 1, \dots, n$.