From Convex Analysis to Learning, Prediction, and Elicitation®
Lecture 12: Gradient Boosting, AdaBoost

Lunjia Hu

1 Gradient Descent

Fact 1. Let f : R? — R be a differentiable function. For every x € RY, as z € R? approaches 0,
[+ 2) = f(z) = (2, Vf(x)) + of[|z])-

In particular, if z = —aV f(x) for a >0, as o approaches 0T,
fla+2) = f(z) = —a||Vf(@)|5 + o(a).

When V f(z) # 0 and « is sufficiently small, we have f(x + z) < f(x).

Definition 1. Let f : R? — R be a differentiable convex function. We say f is A-smooth w.r.t.
norm || - || if for every x,z € R4,

fle+2) — f&) < (2 V@) + Sl

Gradient Descent. Suppose f satisfies A-smoothness w.r.t. the ¢3 norm | - ||2. Choosing z =
—aVf(x), we get

Oé2
fle+2)— f(@) < ol V@3 + 2o |V (@)}

Choosing o = % to minimize the right-hand side, we get
1 2
fla+z) = f2) < =51 IV f2)]2:

2 Gradient Boosting

As we discuss in the previous section, in gradient descent, we choose the update vector z to align
with the direction of the negative gradient —V f(z). Sometimes, we don’t have full access to the
gradient V f(x), but instead have access to some signal s € R? such that (s, Vf(z)) > w for some

“https://lunjiahu.com/convex-analysis/

https://lunjiahu.com/convex-analysis/

threshold w > 0. Assuming f is A-smooth w.r.t. a general norm || - ||, we choose the update vector
z = —as to align with the direction of —s and get

Ao Aa?
Flat2) = 1(@) < ~ols, V(@) + o5 < —aw -+ 2o 5|1

To minimize the right-hand side, we choose a = ﬁ and get

w2

f(x—l—z)—f(x)ﬁ—w.

FTRL as gradient boosting. Recall the FTRL algorithm for OLO:
e Initialize z; = 0 € R%;
e Ineachround ¢t =1,...,T,

1. play

xy < arg min(p(x) — (z, z¢)), (1)
zeX

2. observe y; € Y, and

3. update zi41 < 2zt — MY
When we analyze FTRL, we proved the following result:

Lemma 2. Let ¢ : X — R be a convex function defined on a convex set X C R%, and let¢ : R — R
be its convex conjugate. Assume 1 is A-smooth w.r.t. norm ||-||. In the FTRL algorithm above, we
have

(e — 2%, ye) = Ly p(a”, 20) — Loy (@", ze11) + Doy (@1, 2041) (2)
A 2
<Tpy(a® z) — Dpy(a™, ze41) + 7;7 el

This lemma can be understood as an instance of gradient boosting. Specifically, the gradient
of I'y, (2%, 2) as a function of 2 is exactly x; — z*:

vztl_‘@ﬂﬂ(x*’ zt) = Ve (p(a") +(2t) — (27, 21))
= Vatp(z) — 2°
=ux — " (because Iy, (24, 2¢) = 0 by (T])
Therefore, if the left-hand side of is positive, we have (y;, V., Iy (2%, 2)) > 0, so we can

reduce I'y, s (2*, 2;) by updating z; along the direction of —y;. That is why we have the update rule
2t41 < 2t — NYt in FTRL.

Applying gradient boosting to machine learning. Suppose we have n data points from
X xR: (z1,91),--5 (®n,yn). A model h : X — R corresponds to a vector h = (hy,...,h,) :=
(h(z1),...,h(zy)). The (empirical) loss of this model is

= Zﬁ(hz‘,yﬁ)- (3)
=1

The gradient of L is

VL(h) = (;h (h1,y1), - ,aahﬁ(hn,yn)>. (4)

Thus, if we can find a signal s € R"™ such that (s, VL(h)) > 0, then we can apply gradient
boosting to update the current model h to reduce the loss L. In the next section we will see a
famous example of gradient boosting: AdaBoost.

3 AdaBoost

In the most classic version of AdaBoost, the labels yi,...,y, are binary: y; € {—1,1}. The loss
function is £(h,y) := e7¥" for y € {—1,1} and h € R. By (J),

n

L(h) =) e vl

=1
By (4)),
— _ylhl _ynhn
VL(h) = (e""" (=y1), ..., e7 " (=yn)).

Let w; := e %" be the weight on point (x;,7;). Suppose we have a weak classifier s : X — {—1,1}
such that its weighted error is below 1/2:

Z wz xz # yz % Z Wy - (5)
=1

Note that I(s(x;) # vi) = (1 — yis(w;))/2, so is equivalent to

> wiyis(wi) > 0. (6)
=1

Define weor as the sum of w; where (x;) = y; (i.e. y;s(x;) = 1, or s(x;) is correct), and define wpm;s
as the sum of w; where s(z;) # y; (i.e. yis(z;) = —1, or s(x;) makes a mistake). Inequality (6] is
equivalent to

Weor > Wis-

Define s = (s1,...,8,) := (s(x1), ..., s(zn)). Inequality (6 is equivalent to (s, VL(h)) < 0. We can
thus run gradient boosting to reduce L. That is, for a > 0, we consider update h to h’ = h + as.

L(h+ as) E wie” Y% = wegre” * + wmise™.

The optimal choice of o that minimizes L(h + as) is

o= %1n(wcor/wmis).
For this choice of «, the new loss is
L(h 4 as) = 2\/WcorWmis < Weor + Wmis = L(h).
If we additionally assume that weor/Wmis > 1+ > 1, we have L(h + as) < (1 — Q(e?))L(h). If

initially h = (0,...,0) and L(h) = n, after O(¢ =2 logn) such updates, we will have L(h) < 1, which
implies that sign(h;) = y; for every i = 1,...,n.

	Gradient Descent
	Gradient Boosting
	AdaBoost

