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1 Gradient Descent

Fact 1. Let f : Rd → R be a differentiable function. For every x ∈ Rd, as z ∈ Rd approaches 0,

f(x+ z)− f(x) = ⟨z,∇f(x)⟩+ o(∥z∥).

In particular, if z = −α∇f(x) for α ≥ 0, as α approaches 0+,

f(x+ z)− f(x) = −α∥∇f(x)∥22 + o(α).

When ∇f(x) ̸= 0 and α is sufficiently small, we have f(x+ z) < f(x).

Definition 1. Let f : Rd → R be a differentiable convex function. We say f is λ-smooth w.r.t.
norm ∥ · ∥ if for every x, z ∈ Rd,

f(x+ z)− f(x) ≤ ⟨z,∇f(x)⟩+ λ

2
∥z∥2.

Gradient Descent. Suppose f satisfies λ-smoothness w.r.t. the ℓ2 norm ∥ · ∥2. Choosing z =
−α∇f(x), we get

f(x+ z)− f(x) ≤ −α∥∇f(x)∥22 +
λα2

2
∥∇f(x)∥22.

Choosing α = 1
λ to minimize the right-hand side, we get

f(x+ z)− f(x) ≤ − 1

2λ
∥∇f(x)∥22.

2 Gradient Boosting

As we discuss in the previous section, in gradient descent, we choose the update vector z to align
with the direction of the negative gradient −∇f(x). Sometimes, we don’t have full access to the
gradient ∇f(x), but instead have access to some signal s ∈ Rd such that ⟨s,∇f(x)⟩ ≥ w for some
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threshold w > 0. Assuming f is λ-smooth w.r.t. a general norm ∥ · ∥, we choose the update vector
z = −αs to align with the direction of −s and get

f(x+ z)− f(x) ≤ −α⟨s,∇f(x)⟩+ λα2

2
∥s∥2 ≤ −αw +

λα2

2
∥s∥2.

To minimize the right-hand side, we choose α = w
λ∥s∥2 and get

f(x+ z)− f(x) ≤ − w2

2λ∥s∥2
.

FTRL as gradient boosting. Recall the FTRL algorithm for OLO:

• Initialize z1 = 0 ∈ Rd;

• In each round t = 1, . . . , T ,

1. play
xt ← argmin

x∈X
(φ(x)− ⟨x, zt⟩), (1)

2. observe yt ∈ Y , and

3. update zt+1 ← zt − ηyt.

When we analyze FTRL, we proved the following result:

Lemma 2. Let φ : X → R be a convex function defined on a convex set X ⊆ Rd, and let ψ : Rd → R
be its convex conjugate. Assume ψ is λ-smooth w.r.t. norm ∥ · ∥. In the FTRL algorithm above, we
have

η⟨xt − x∗, yt⟩ = Γφ,ψ(x
∗, zt)− Γφ,ψ(x

∗, zt+1) + Γφ,ψ(xt, zt+1) (2)

≤ Γφ,ψ(x
∗, zt)− Γφ,ψ(x

∗, zt+1) +
λη2

2
∥yt∥2.

This lemma can be understood as an instance of gradient boosting. Specifically, the gradient
of Γφ,ψ(x

∗, zt) as a function of zt is exactly xt − x∗:

∇ztΓφ,ψ(x∗, zt) = ∇zt(φ(x∗) + ψ(zt)− ⟨x∗, zt⟩)
= ∇ztψ(zt)− x∗

= xt − x∗. (because Γφ,ψ(xt, zt) = 0 by (1))

Therefore, if the left-hand side of (2) is positive, we have ⟨yt,∇ztΓφ,ψ(x∗, zt)⟩ > 0, so we can
reduce Γφ,ψ(x

∗, zt) by updating zt along the direction of −yt. That is why we have the update rule
zt+1 ← zt − ηyt in FTRL.
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Applying gradient boosting to machine learning. Suppose we have n data points from
X × R: (x1, y1), . . . , (xn, yn). A model h : X → R corresponds to a vector h = (h1, . . . , hn) :=
(h(x1), . . . , h(xn)). The (empirical) loss of this model is

L(h) =

n∑
i=1

ℓ(hi, yi). (3)

The gradient of L is

∇L(h) =
(
∂

∂h
ℓ(h1, y1), . . . ,

∂

∂h
ℓ(hn, yn)

)
. (4)

Thus, if we can find a signal s ∈ Rn such that ⟨s,∇L(h)⟩ > 0, then we can apply gradient
boosting to update the current model h to reduce the loss L. In the next section we will see a
famous example of gradient boosting: AdaBoost.

3 AdaBoost

In the most classic version of AdaBoost, the labels y1, . . . , yn are binary: yi ∈ {−1, 1}. The loss
function is ℓ(h, y) := e−yh for y ∈ {−1, 1} and h ∈ R. By (3),

L(h) =
n∑
i=1

e−yihi .

By (4),
∇L(h) = (e−y1h1(−y1), . . . , e−ynhn(−yn)).

Let wi := e−yihi be the weight on point (xi, yi). Suppose we have a weak classifier s : X → {−1, 1}
such that its weighted error is below 1/2:

n∑
i=1

wiI(s(xi) ̸= yi) <
1

2

n∑
i=1

wi. (5)

Note that I(s(xi) ̸= yi) = (1− yis(xi))/2, so (5) is equivalent to

n∑
i=1

wiyis(xi) > 0. (6)

Define wcor as the sum of wi where (xi) = yi (i.e. yis(xi) = 1, or s(xi) is correct), and define wmis

as the sum of wi where s(xi) ̸= yi (i.e. yis(xi) = −1, or s(xi) makes a mistake). Inequality (6) is
equivalent to

wcor > wmis.

Define s = (s1, . . . , sn) := (s(x1), . . . , s(xn)). Inequality (6) is equivalent to ⟨s,∇L(h)⟩ < 0. We can
thus run gradient boosting to reduce L. That is, for α ≥ 0, we consider update h to h′ = h+ αs.

L(h+ αs) =

n∑
i=1

wie
−αyisi = wcore

−α + wmise
α.
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The optimal choice of α that minimizes L(h+ αs) is

α =
1

2
ln(wcor/wmis).

For this choice of α, the new loss is

L(h+ αs) = 2
√
wcorwmis < wcor + wmis = L(h).

If we additionally assume that wcor/wmis ≥ 1 + ε > 1, we have L(h + αs) ≤ (1 − Ω(ε2))L(h). If
initially h = (0, . . . , 0) and L(h) = n, after O(ε−2 logn) such updates, we will have L(h) < 1, which
implies that sign(hi) = yi for every i = 1, . . . , n.
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