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Lecture 9: Blackwell Approachability and Online Calibration
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1 Online Multi-objective Optimization

We consider the following online learning problem specified by three sets: learner’s action set X.
In each round t = 1, . . . , T :

1. Learner chooses xt ∈ X;

2. Adversary reveals yt ∈ Y .

The goal of the learner is to minimize the following quantity, where Z ⊆ Rd is a set of distinguishers,
and u : X × Y → Rd is some fixed function known to the learner:

L(x1, . . . , xT ; y1, . . . , yT ) := sup
z∈Z

〈
1

T

T∑
t=1

u(xt, yt), z

〉

Assumption. for every z ∈ Z, there exists x ∈ X such that supy∈Y ⟨u(x, y), z⟩ ≤ w, where w ∈ R
is some fixed and known threshold.

Algorithm 1. Online Multi-objective Optimization.

1. Use a low-regret algorithm (e.g. FTRL) to choose zt ∈ Z.

2. Play xt ∈ X such that supy∈Y ⟨u(xt, y), zt⟩ ≤ t.

3. Observe yt ∈ Y from the adversary.

Suppose zt’s are chosen so that the following low-regret guarantee is satisfied:

sup
z∈Z

〈
1

T

T∑
t=1

u(xt, yt), z

〉
−

〈
1

T

T∑
t=1

u(xt, yt), zt

〉
≤ ε.

Now we have

L(x1, . . . , xT ; y1, . . . , yT ) = sup
z∈Z

〈
1

T

T∑
t=1

u(xt, yt), z

〉

≤

〈
1

T

T∑
t=1

u(xt, yt), zt

〉
+ ε

≤ w + ε.
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Remark 1. In many cases, the functions fz(x, y) := ⟨u(x, y), z⟩ have the minimax property:

inf
x∈X

sup
y∈Y

fz(x, y) = sup
y∈Y

inf
x∈X

fz(x, y)

2 Online Calibration

In each round t = 1, . . . , T :

1. Predictor chooses distribution a τt of predictions p ∈ [0, 1];

2. Adaptive adversary reveals outcome yt ∈ {0, 1};

3. Predictor’s prediction pt is sampled from τt.

Consider making discretized predictions among 1/m, 2/m, . . . , 1. Our goal is to achieve

E[ECE(p1, . . . , pT ; y1, . . . , yT )] = O

(√
m

T
+

1

m

)
.

Choosing m ≈ T 1/3 gives ECE = O(T−1/3). ECE can be calculated as follows:

ECE(p1, . . . , pT ; y1, . . . , yT ) =
1

T

m∑
i=1

∣∣∣∣∣
T∑
t=1

(yt −
i

m
)I[pt =

i

m
]

∣∣∣∣∣
=

1

T

m∑
i=1

T∑
t=1

sup
zi∈[−1,1]

(yt −
i

m
)I[pt =

i

m
]zi

= sup
z∈[−1,1]m

1

T

T∑
t=1

m∑
i=1

(yt −
i

m
)I[pt =

i

m
]zi

= sup
z∈[−1,1]m

〈
1

T

T∑
t=1

ut, z

〉
,

where

ut =

((
yt −

1

m

)
I
[
pt =

1

m

]
,

(
yt −

2

m

)
I
[
pt =

2

m

]
, . . . , (yt − 1) I [pt = 1]

)
.

For x ∈ ∆m and y ∈ {0, 1}, define

u(x, y) :=

((
y − 1

m

)
x1,

(
y − 2

m

)
x2, . . . , (y − 1)xm

)
.

We have ∥u(x, y)∥1 ≤ 1. We set Z = [−1, 1]m.

Claim 1. For every z ∈ [−1, 1]m, there exists x ∈ ∆m such that

sup
y∈{0,1}

⟨u(x, y), z⟩ ≤ 1

m
.
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Proof. Let z ∈ [−1, 1]m be arbitrary. By the minimax theorem, it suffices to prove that for every
distribution π on {0, 1}, there exists x ∈ ∆m such that

Ey∼π⟨u(x, y), z⟩ ≤
1

m
.

Let i/m be the value closest to Eπ[y] among {1/m, 2/m, . . . , 1}. We simply choose x = ei :=
(0, . . . , 0, 1, 0, . . . , 0) where the value 1 is at the i-th coordinate. Now we have

Ey∼π⟨u(x, y), z⟩ = Ey∼π

[(
y − i

m

)
zi

]
=

(
Eπ[y]−

i

m

)
zi ≤

∣∣∣∣Eπ[y]−
i

m

∣∣∣∣ · |zi| ≤ 1

m
· 1 =

1

m
.

Claim 2. There is an (efficient) low-regret online algorithm for choosing z1, . . . , zT ∈ [−1, 1]m that
guarantees the following regret bound, regardless of how x1, . . . , xT ∈ ∆m and y1, . . . , yT ∈ {0, 1}
are chosen:

sup
z∈Z

〈
1

T

T∑
t=1

u(xt, yt), z

〉
−

〈
1

T

T∑
t=1

u(xt, yt), zt

〉
≤ O(

√
m/T ).

Proof. Claim 2 is a standard regret bound for online linear optimization (OLO), where the learner’s
action z comes from [−1, 1]m, and the adversary’s action u(x, y) comes from B̄ℓ1(0, 1). Specifically,
consider running Follow the Regularized Leader (FTRL) with regularizer φ(z) = 1

2∥z∥
2
2. Clearly, φ

is bounded between 0 and m/2 on [−1, 1]m. Moreover, it is 1-strongly convex w.r.t. the ℓ2 norm,
and thus 1-strongly convex also w.r.t. the ℓ∞ norm (which is the dual of the ℓ1 norm in which
u(x, y) is bounded). Therefore, the total regret of T rounds of FTRL with learning rate η is at
most

m

2η
+

ηT

2
.

Choosing η =
√

m/T gives a regret bound of
√
mT . Thus the average regret over T rounds is at

most
√
mT/T =

√
m/T .

Combining Claim 1 and Claim 2, we know that Algorithm 1 guarantees

L(x1, . . . , xT ; y1, . . . , yT ) := sup
z∈[−1,1]m

〈
1

T

T∑
t=1

u(xt, yt), z

〉
= O

(√
m

T
+

1

m

)
.

Now in each round t, we choose τt to be the distribution of p ∈ [0, 1] corresponding to xt. Concretely,
we set Prp∼τt [p = i/m] to be xi for every i = 1, . . . ,m. Since each pt is drawn from τt, by standard
martingale concentration inequalities, we can show that

E|ECE(p1, . . . , pT ; y1, . . . , yT )− L(x1, . . . , xT ; y1, . . . , yT )| = O

(√
m

T

)
.

Combining the two equations above, we get

E[ECE(p1, . . . , pT ; y1, . . . , yT )] = O

(√
m

T
+

1

m

)
.
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