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1 Online Multi-objective Optimization
We consider the following online learning problem specified by three sets: learner’s action set X.
In each round ¢t =1,...,T":

1. Learner chooses z; € X;

2. Adversary reveals y; € Y.

The goal of the learner is to minimize the following quantity, where Z C R¢ is a set of distinguishers,
and u: X x Y — R? is some fixed function known to the learner:

T
1
L(Ila ey T YLy e 7yT) ‘= sup <TZU($t7?/t)7Z>

z€Z —1

Assumption. for every z € Z, there exists z € X such that sup, ey (u(z,y), 2) < w, where w € R
is some fixed and known threshold.

Algorithm 1. Online Multi-objective Optimization.
1. Use a low-regret algorithm (e.g. FTRL) to choose z; € Z.

2. Play x; € X such that supyey(u(:):t,y), zt) < t.

3. Observe y; € Y from the adversary.

Suppose z;’s are chosen so that the following low—regret guarantee is satisfied:
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Remark 1. In many cases, the functions f,(x,y) := (u(z,y), z) have the minimax property:

inf su z,y) = sup inf f,(z,
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2 Online Calibration

Ineachround t =1,...,T":
1. Predictor chooses distribution a 7; of predictions p € [0, 1];
2. Adaptive adversary reveals outcome y; € {0,1};
3. Predictor’s prediction p; is sampled from 7.

Consider making discretized predictions among 1/m,2/m,...,1. Our goal is to achieve
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Choosing m ~ T'/3 gives ECE = O(T~'/3). ECE can be calculated as follows:
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For x € A, and y € {0, 1}, define

= (1= D) on (3 2o ).

We have |lu(z,y)|1 <1. We set Z = [—1,1]™.

Claim 1. For every z € [—1,1]™, there exists x € A, such that
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Proof. Let z € [—1,1]" be arbitrary. By the minimax theorem, it suffices to prove that for every
distribution 7 on {0, 1}, there exists € A, such that
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Let i/m be the value closest to Er[y|] among {1/m,2/m,...,1}. We simply choose z = e; :=
(0,...,0,1,0,...,0) where the value 1 is at the i-th coordinate. Now we have
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Claim 2. There is an (efficient) low-regret online algorithm for choosing z1,...,zr € [—1,1]™ that

guarantees the following regret bound, regardless of how x1,...,zp € Ay and y1,...,yr € {0,1}

are chosen:
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Proof. Claim [2]is a standard regret bound for online linear optimization (OLO), where the learner’s
action z comes from [—1,1]™, and the adversary’s action u(z,y) comes from By, (0, 1). Specifically,
consider running Follow the Regularized Leader (FTRL) with regularizer (z) = 1||2[|3. Clearly, ¢
is bounded between 0 and m/2 on [—1,1]™. Moreover, it is 1-strongly convex w.r.t. the o norm,
and thus 1-strongly convex also w.r.t. the /o, norm (which is the dual of the ¢; norm in which
u(x,y) is bounded). Therefore, the total regret of T rounds of FTRL with learning rate n is at

most
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Choosing n = \/m/T gives a regret bound of vmT. Thus the average regret over T rounds is at
most vVmT /T = \/m/T. O

Combining Claim [T] and Claim [2], we know that Algorithm [I] guarantees
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Now in each round ¢, we choose 7; to be the distribution of p € [0, 1] corresponding to x;. Concretely,
we set Prpr, [p =i/m] to be z; for every i = 1,...,m. Since each p; is drawn from 7, by standard
martingale concentration inequalities, we can show that
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Combining the two equations above, we get
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