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1 Proper Scoring Rules
Definition 1. We say a scoring rule s : [0,1] x {0,1} — R is proper if for every p,q € [0,1],

Eyps(p,y) > Eyps(q,y).

Theorem 1. Let s : [0,1] x {0,1} — R be a proper scoring rule. There exists a convexr function
¢ :10,1] = R and its subgradient Vo : [0,1] — R such that

s(¢,y) = w(q) + (y — O)V(q) for every q € 0,1] and y € {0,1}. (1)

Proof. We extend the domain of s from [0, 1] x {0, 1} to [0, 1] x [0, 1] as follows: for every p, ¢ € [0, 1],
define s(q,p) :=Ey~ps(q,y). Define ¢(p) := s(p,p). By the definition of properness,

©(p) > s(q,p) for every p,q € [0,1]. (2)

Let us consider a fixed ¢q € [0,1]. The function s(g,p) is affine in p, and when p = ¢, the inequality
becomes an equality. Therefore, the graph of s(g,p) (as an affine function of p) is “tangent” to
the graph of ¢(p) at p = ¢. In particular, the slope of the graph of s(q,p) is a subgradient of ¢ at
q. Let Vip(q) denote that subgradient. Since the subgradient exists for every ¢ € [0,1], we know
that ¢ is convex. Moreover,

s(q,p) = ¢(q) + (p = 9)Ve(q) for every p,q € [0,1].
This implies as a special case. O
Remark 1. Let 1 : R — R be the convex conjugate of ¢. We have
0="Tyu(g, Ve(q) = ¢(q) + ¥ (Velq) — qVe(q).
Plugging this into (1), we have
s(¢,y) = yVelg) — ¥(Ve(q)).

In particular, for every fixved y, the function s(q,y) is concave in V(q), though it is not necessarily
concave in q itself.
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Remark 2. Definition [1] and Theorem [1] extends beyond binary outcomes as follows.

Definition 2. Suppose there are k possible outcomes y = 1,...,k. We say a scoring rule s :
Ay x [k] = R is proper if for every p,q € Ag,

Eyps(p,y) > Eyps(q,y).

Theorem 2. Let s : Ay x [k] — R be a proper scoring rule. There exists a convex function
¢ : A — R and its subgradient Vi : A, — R¥ such that

s(¢:y) = ¢(q) + (ey — q,V(q)) for every q € Ay and y € [K].
Here e, is the unit vector with its y-th coordinate being 1 (and all other coordinates being 0).

Example 1 (Cross-entropy Loss). The cross-entropy loss —s(q,y) = —In gy is obtained by choosing
the convex function ¢ as the negative Shannon entropy:

k
e(q) = Z qi Ing;,
i=1

Ve(g) = (Ingi,...,Ing),
s(¢,y) = ¢(q) + (ey — ¢, Ve(q)) = Ingy,
—s(q,y) = —1Ingy,.

Example 2 (Squared loss, a.k.a Brier loss)). The squared loss —s(q,y) = 3||ey — q||3 is obtained
by choosing ¢ as folllows:

1
o(q) = §(HQH§ —1)
V() = g,
1, ., 1 1 )
s(q,y) = p(q) + (ey —q,Vo(q) = Qy — §HqH2 3 = —5”% —qll3,
1
—s(qy) = 5lley —qll3.

2 Revelation Principle

Theorem 3. Let u: Ax[k] — R be an arbitrary function. Define best response function ry, : Ap —
A such that 1,(q) = arg max,c 4 Ey~qu(a,y). Define

s(q:y) = u(ru(q), y)-
Then s is proper.

Example 3 (Classification error). Suppose A = [k], and u(a,y) = lja = y]. We have r,(q) =
arg maxX,e(y ga- We obtain the following proper scoring rule:

5(q,y) = u(ru(q),y) = Iy = arg r[r;]ax qa).
ac



3 V-shape Decomposition

Theorem 4. Let ¢ : [0,1] — R be a twice-differentiable convex function. Then
1
J0) = O+ [ 00—t > 0dt,
0

o(v) = p(0) + ¢'(0)v + /0 ¢ (t) max{v — t,0}dt.

4 Generalized Linear Models

Learning a generalized linear model. Let D be a distribution of (z,y) € R? x R that we
wish to learn. Assume (z,y) ~ D satisfies y = o({a*,z)) + 2, where a* € R? is the ground-truth
parameter, ¢ : R — R is a monotonically increasing link function, and z € R is random mean-zero
noise independent of x. Our goal is to learn a* assuming knowledge of o.

Let £: R x R — R be a loss function. We can estimate a* by finding a € R? that minimizes

L(a) := Z Uo({a, i), yi)

over i.i.d. examples (x1,91),..., (Zn,yn) drawn from D.

The question is how we should choose the loss function £. Ideally, the choice of £ should make
L convex in a, and E[L(a)] should be minimized when a = a*.

Let ¢ : R — R be a convex function such that o(t) = V(). Let ¢ be the convex conjugate of
1. We define

Uq,y) = —¢(a) = (v = ) Ve(q).
This is a proper loss function: when y is drawn from a distribution with mean p, the expected
loss E[¢(q, y)] is minimized at ¢ = p. Consequently, when y = o({a*, x)) + z for a mean-zero noize
z, the expected loss E[¢(c({(a,z)),y)] is minimized at a = a*. Note that for ¢,¢ € R such that
q = o(t) = Vi(t), we have
tg,y) = P(t) — yt.
Therefore,

t(o((a,z)),y) = ¥((a,z)) — y(a, )

is a convex function of a.
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