

From Convex Analysis to Learning, Prediction, and Elicitation*

Lecture 10: Proper Scoring Rules and Revelation Principle

Lunjia Hu

1 Proper Scoring Rules

Definition 1. We say a scoring rule $s : [0, 1] \times \{0, 1\} \rightarrow \mathbb{R}$ is proper if for every $p, q \in [0, 1]$,

$$\mathbb{E}_{y \sim p} s(p, y) \geq \mathbb{E}_{y \sim p} s(q, y).$$

Theorem 1. Let $s : [0, 1] \times \{0, 1\} \rightarrow \mathbb{R}$ be a proper scoring rule. There exists a convex function $\varphi : [0, 1] \rightarrow \mathbb{R}$ and its subgradient $\nabla \varphi : [0, 1] \rightarrow \mathbb{R}$ such that

$$s(q, y) = \varphi(q) + (y - q)\nabla \varphi(q) \quad \text{for every } q \in [0, 1] \text{ and } y \in \{0, 1\}. \quad (1)$$

Proof. We extend the domain of s from $[0, 1] \times \{0, 1\}$ to $[0, 1] \times [0, 1]$ as follows: for every $p, q \in [0, 1]$, define $s(q, p) := \mathbb{E}_{y \sim p} s(q, y)$. Define $\varphi(p) := s(p, p)$. By the definition of properness,

$$\varphi(p) \geq s(q, p) \quad \text{for every } p, q \in [0, 1]. \quad (2)$$

Let us consider a fixed $q \in [0, 1]$. The function $s(q, p)$ is affine in p , and when $p = q$, the inequality (2) becomes an equality. Therefore, the graph of $s(q, p)$ (as an affine function of p) is “tangent” to the graph of $\varphi(p)$ at $p = q$. In particular, the slope of the graph of $s(q, p)$ is a subgradient of φ at q . Let $\nabla \varphi(q)$ denote that subgradient. Since the subgradient exists for every $q \in [0, 1]$, we know that φ is convex. Moreover,

$$s(q, p) = \varphi(q) + (p - q)\nabla \varphi(q) \quad \text{for every } p, q \in [0, 1].$$

This implies (1) as a special case. □

Remark 1. Let $\psi : \mathbb{R} \rightarrow \mathbb{R}$ be the convex conjugate of φ . We have

$$0 = \Gamma_{\varphi, \psi}(q, \nabla \varphi(q)) = \varphi(q) + \psi(\nabla \varphi(q)) - q\nabla \varphi(q).$$

Plugging this into (1), we have

$$s(q, y) = y\nabla \varphi(q) - \psi(\nabla \varphi(q)).$$

In particular, for every fixed y , the function $s(q, y)$ is concave in $\nabla \varphi(q)$, though it is not necessarily concave in q itself.

*<https://lunjiahu.com/convex-analysis/>

Remark 2. Definition 1 and Theorem 1 extends beyond binary outcomes as follows.

Definition 2. Suppose there are k possible outcomes $y = 1, \dots, k$. We say a scoring rule $s : \Delta_k \times [k] \rightarrow \mathbb{R}$ is proper if for every $p, q \in \Delta_k$,

$$\mathbb{E}_{y \sim p} s(p, y) \geq \mathbb{E}_{y \sim p} s(q, y).$$

Theorem 2. Let $s : \Delta_k \times [k] \rightarrow \mathbb{R}$ be a proper scoring rule. There exists a convex function $\varphi : \Delta_k \rightarrow \mathbb{R}$ and its subgradient $\nabla \varphi : \Delta_k \rightarrow \mathbb{R}^k$ such that

$$s(q, y) = \varphi(q) + \langle \mathbf{e}_y - q, \nabla \varphi(q) \rangle \quad \text{for every } q \in \Delta_k \text{ and } y \in [k].$$

Here \mathbf{e}_y is the unit vector with its y -th coordinate being 1 (and all other coordinates being 0).

Example 1 (Cross-entropy Loss). The cross-entropy loss $-s(q, y) = -\ln q_y$ is obtained by choosing the convex function φ as the negative Shannon entropy:

$$\begin{aligned} \varphi(q) &= \sum_{i=1}^k q_i \ln q_i, \\ \nabla \varphi(q) &= (\ln q_1, \dots, \ln q_k), \\ s(q, y) &= \varphi(q) + \langle \mathbf{e}_y - q, \nabla \varphi(q) \rangle = \ln q_y, \\ -s(q, y) &= -\ln q_y. \end{aligned}$$

Example 2 (Squared loss, a.k.a Brier loss)). The squared loss $-s(q, y) = \frac{1}{2} \|\mathbf{e}_y - q\|_2^2$ is obtained by choosing φ as follows:

$$\begin{aligned} \varphi(q) &:= \frac{1}{2} (\|q\|_2^2 - 1) \\ \nabla \varphi(q) &= q, \\ s(q, y) &= \varphi(q) + \langle \mathbf{e}_y - q, \nabla \varphi(q) \rangle = q_y - \frac{1}{2} \|q\|_2^2 - \frac{1}{2} = -\frac{1}{2} \|\mathbf{e}_y - q\|_2^2, \\ -s(q, y) &= \frac{1}{2} \|\mathbf{e}_y - q\|_2^2. \end{aligned}$$

2 Revelation Principle

Theorem 3. Let $u : A \times [k] \rightarrow \mathbb{R}$ be an arbitrary function. Define best response function $r_u : \Delta_k \rightarrow A$ such that $r_u(q) = \arg \max_{a \in A} \mathbb{E}_{y \sim q} u(a, y)$. Define

$$s(q, y) := u(r_u(q), y).$$

Then s is proper.

Example 3 (Classification error). Suppose $A = [k]$, and $u(a, y) = \mathbb{I}[a = y]$. We have $r_u(q) = \arg \max_{a \in [k]} q_a$. We obtain the following proper scoring rule:

$$s(q, y) = u(r_u(q), y) = \mathbb{I}[y = \arg \max_{a \in [k]} q_a].$$

3 V-shape Decomposition

Theorem 4. Let $\varphi : [0, 1] \rightarrow \mathbb{R}$ be a twice-differentiable convex function. Then

$$\begin{aligned}\varphi'(v) &= \varphi'(0) + \int_0^1 \varphi''(t) \mathbb{I}[v - t \geq 0] dt, \\ \varphi(v) &= \varphi(0) + \varphi'(0)v + \int_0^1 \varphi''(t) \max\{v - t, 0\} dt.\end{aligned}$$

4 Generalized Linear Models

Learning a generalized linear model. Let D be a distribution of $(x, y) \in \mathbb{R}^d \times \mathbb{R}$ that we wish to learn. Assume $(x, y) \sim D$ satisfies $y = \sigma(\langle a^*, x \rangle) + z$, where $a^* \in \mathbb{R}^d$ is the ground-truth parameter, $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is a monotonically increasing *link* function, and $z \in \mathbb{R}$ is random mean-zero noise independent of x . Our goal is to learn a^* assuming knowledge of σ .

Let $\ell : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a loss function. We can estimate a^* by finding $a \in \mathbb{R}^d$ that minimizes

$$L(a) := \sum_{i=1}^n \ell(\sigma(\langle a, x_i \rangle), y_i)$$

over i.i.d. examples $(x_1, y_1), \dots, (x_n, y_n)$ drawn from D .

The question is how we should choose the loss function ℓ . Ideally, the choice of ℓ should make L convex in a , and $\mathbb{E}[L(a)]$ should be minimized when $a = a^*$.

Let $\psi : \mathbb{R} \rightarrow \mathbb{R}$ be a convex function such that $\sigma(t) = \nabla \psi(t)$. Let φ be the convex conjugate of ψ . We define

$$\ell(q, y) := -\varphi(q) - (y - q)\nabla \varphi(q).$$

This is a proper loss function: when y is drawn from a distribution with mean p , the expected loss $\mathbb{E}[\ell(q, y)]$ is minimized at $q = p$. Consequently, when $y = \sigma(\langle a^*, x \rangle) + z$ for a mean-zero noise z , the expected loss $\mathbb{E}[\ell(\sigma(\langle a, x \rangle), y)]$ is minimized at $a = a^*$. Note that for $q, t \in \mathbb{R}$ such that $q = \sigma(t) = \nabla \psi(t)$, we have

$$\ell(q, y) = \psi(t) - yt.$$

Therefore,

$$\ell(\sigma(\langle a, x \rangle), y) = \psi(\langle a, x \rangle) - y\langle a, x \rangle$$

is a convex function of a .