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1 Proper Scoring Rules

Definition 1. We say a scoring rule s : [0, 1]× {0, 1} → R is proper if for every p, q ∈ [0, 1],

Ey∼ps(p, y) ≥ Ey∼ps(q, y).

Theorem 1. Let s : [0, 1] × {0, 1} → R be a proper scoring rule. There exists a convex function
φ : [0, 1] → R and its subgradient ∇φ : [0, 1] → R such that

s(q, y) = φ(q) + (y − q)∇φ(q) for every q ∈ [0, 1] and y ∈ {0, 1}. (1)

Proof. We extend the domain of s from [0, 1]×{0, 1} to [0, 1]×[0, 1] as follows: for every p, q ∈ [0, 1],
define s(q, p) := Ey∼ps(q, y). Define φ(p) := s(p, p). By the definition of properness,

φ(p) ≥ s(q, p) for every p, q ∈ [0, 1]. (2)

Let us consider a fixed q ∈ [0, 1]. The function s(q, p) is affine in p, and when p = q, the inequality
(2) becomes an equality. Therefore, the graph of s(q, p) (as an affine function of p) is “tangent” to
the graph of φ(p) at p = q. In particular, the slope of the graph of s(q, p) is a subgradient of φ at
q. Let ∇φ(q) denote that subgradient. Since the subgradient exists for every q ∈ [0, 1], we know
that φ is convex. Moreover,

s(q, p) = φ(q) + (p− q)∇φ(q) for every p, q ∈ [0, 1].

This implies (1) as a special case.

Remark 1. Let ψ : R → R be the convex conjugate of φ. We have

0 = Γφ,ψ(q,∇φ(q)) = φ(q) + ψ(∇φ(q))− q∇φ(q).

Plugging this into (1), we have

s(q, y) = y∇φ(q)− ψ(∇φ(q)).

In particular, for every fixed y, the function s(q, y) is concave in ∇φ(q), though it is not necessarily
concave in q itself.

∗https://lunjiahu.com/convex-analysis/
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Remark 2. Definition 1 and Theorem 1 extends beyond binary outcomes as follows.

Definition 2. Suppose there are k possible outcomes y = 1, . . . , k. We say a scoring rule s :
∆k × [k] → R is proper if for every p, q ∈ ∆k,

Ey∼ps(p, y) ≥ Ey∼ps(q, y).

Theorem 2. Let s : ∆k × [k] → R be a proper scoring rule. There exists a convex function
φ : ∆k → R and its subgradient ∇φ : ∆k → Rk such that

s(q, y) = φ(q) + ⟨ey − q,∇φ(q)⟩ for every q ∈ ∆k and y ∈ [k].

Here ey is the unit vector with its y-th coordinate being 1 (and all other coordinates being 0).

Example 1 (Cross-entropy Loss). The cross-entropy loss −s(q, y) = − ln qy is obtained by choosing
the convex function φ as the negative Shannon entropy:

φ(q) =
k∑
i=1

qi ln qi,

∇φ(q) = (ln q1, . . . , ln qk),

s(q, y) = φ(q) + ⟨ey − q,∇φ(q)⟩ = ln qy,

−s(q, y) = − ln qy.

Example 2 (Squared loss, a.k.a Brier loss)). The squared loss −s(q, y) = 1
2∥ey − q∥22 is obtained

by choosing φ as folllows:

φ(q) :=
1

2
(∥q∥22 − 1)

∇φ(q) = q,

s(q, y) = φ(q) + ⟨ey − q,∇φ(q)⟩ = qy −
1

2
∥q∥22 −

1

2
= −1

2
∥ey − q∥22,

−s(q, y) = 1

2
∥ey − q∥22.

2 Revelation Principle

Theorem 3. Let u : A× [k] → R be an arbitrary function. Define best response function ru : ∆k →
A such that ru(q) = argmaxa∈A Ey∼qu(a, y). Define

s(q, y) := u(ru(q), y).

Then s is proper.

Example 3 (Classification error). Suppose A = [k], and u(a, y) = I[a = y]. We have ru(q) =
argmaxa∈[k] qa. We obtain the following proper scoring rule:

s(q, y) = u(ru(q), y) = I[y = argmax
a∈[k]

qa].
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3 V-shape Decomposition

Theorem 4. Let φ : [0, 1] → R be a twice-differentiable convex function. Then

φ′(v) = φ′(0) +

∫ 1

0
φ′′(t)I[v − t ≥ 0]dt,

φ(v) = φ(0) + φ′(0)v +

∫ 1

0
φ′′(t)max{v − t, 0}dt.

4 Generalized Linear Models

Learning a generalized linear model. Let D be a distribution of (x, y) ∈ Rd × R that we
wish to learn. Assume (x, y) ∼ D satisfies y = σ(⟨a∗, x⟩) + z, where a∗ ∈ Rd is the ground-truth
parameter, σ : R → R is a monotonically increasing link function, and z ∈ R is random mean-zero
noise independent of x. Our goal is to learn a∗ assuming knowledge of σ.

Let ℓ : R× R → R be a loss function. We can estimate a∗ by finding a ∈ Rd that minimizes

L(a) :=

n∑
i=1

ℓ(σ(⟨a, xi⟩), yi)

over i.i.d. examples (x1, y1), . . . , (xn, yn) drawn from D.
The question is how we should choose the loss function ℓ. Ideally, the choice of ℓ should make

L convex in a, and E[L(a)] should be minimized when a = a∗.
Let ψ : R → R be a convex function such that σ(t) = ∇ψ(t). Let φ be the convex conjugate of

ψ. We define
ℓ(q, y) := −φ(q)− (y − q)∇φ(q).

This is a proper loss function: when y is drawn from a distribution with mean p, the expected
loss E[ℓ(q, y)] is minimized at q = p. Consequently, when y = σ(⟨a∗, x⟩) + z for a mean-zero noize
z, the expected loss E[ℓ(σ(⟨a, x⟩), y)] is minimized at a = a∗. Note that for q, t ∈ R such that
q = σ(t) = ∇ψ(t), we have

ℓ(q, y) = ψ(t)− yt.

Therefore,
ℓ(σ(⟨a, x⟩), y) = ψ(⟨a, x⟩)− y⟨a, x⟩

is a convex function of a.
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