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Lecture 4: No-Regret Online Learning
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In this lecture, we apply what we have learned about the minimax theorem to obtain a no-regret
algorithm for a famous online learning problem: experts problem, as well as its generalization to
Online Linear Optimization (OLO). The experts problem and OLO are a fundamental building
block for solving many other online learning problems that we will discuss later in the course (e.g.,
online calibration and Blackwell’s approachability).

1 The Classic Experts Problem

Here is the classic setup of the experts problem. As the learner, our goal is to learn from d experts,
labeled 1, . . . , d. In each round t = 1, . . . , T , our task is to choose a probability distribution xt ∈ ∆d

over the experts. After that, the loss incurred by each expert is revealed as a vector yt ∈ {−1, 1}d,
where the i-th coordinate of yt is the loss incurred by expert i in round t. The loss we incur in
round t is ⟨xt, yt⟩ ∈ [−1, 1].

Our goal is to minimize the regret R compared to the best distribution x∗ ∈ ∆d in hindsight:

R(x1,...,T , y1,...,T ) :=

T∑
t=1

⟨xt, yt⟩ − min
x∗∈∆d

T∑
t=1

⟨x∗, yt⟩. (1)

Clearly, the regret for T rounds is at most T . Can we do substantially better than that and develop
a strategy that guarantees o(T ) regret? Is that even possible?

The challenge in the experts problem is that the learner needs to choose the distribution xt ∈ ∆d

before yt is revealed. Moreover, we do not make any assumptions on how the yt’s are chosen—we
assume that an adversary chooses y1, . . . , yT , and we even assume that the adversary knows the
learner’s strategy. This is a common challenge in many online learning problems. At every round
t, the learner cannot see the outcome yt before taking an action or making a prediction. Therefore,
in order to achieve a low regret, the learner needs to learn from the previous outcomes y1, . . . , yt−1.

We will show, somewhat surprisingly, that it is possible to ensure O(
√
T log d) regret in T

rounds. The idea will be to use the minimax theorem to switch the order of play. The intuition
is that if the adversary plays first and reveals yt or the distribution of yt before the learner has
to choose xt, then it is straightforward to find the best response xt that minimizes the expected
regret.

To formally state the result, we need to formalize the strategy space of the learner and the
adversary. The learner’s strategy L consists of functions ℓ1, . . . , ℓT , where each ℓt maps the history
ht−1 := (y1, . . . , yt−1) to some xt = ℓt(ht−1) ∈ ∆d. The adversary’s strategy is simply A =
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(y1, . . . , yT ) ∈ ({−1, 1}d)T . The entire sequence x1, y1, . . . , xT , yT is determined by L and A, where
y1, . . . , yT are immediately given by A, and each xt is given by xt = ℓ(ht−1) = ℓ((y1, . . . , yt−1)). We
define

R(L,A) := R(x1,...,T , y1,...,T ).

We use L to denote the set of all possible learner’s strategies L = (ℓ1, . . . , ℓT ), and use A =
({−1, 1}d)T to denote the set of all possible adversary’s strategies.

Our main theorem shows that the learner has a strategy that guarantees O(
√
T log d) regret

against any adversary:

Theorem 1. There exists a learner’s strategy L ∈ L such that

max
A∈A

R(L,A) = O(
√

T log d).

As mentioned earlier, we prove Theorem 1 by considering an order-reversed game where the
adversary chooses a (randomized) strategy first, in which case it becomes easy for the learner to
achieve low expected regret:

Lemma 2. Let Π be an arbitrary distribution over A. There exists a learner’s strategy L ∈ L such
that

EA∼ΠR(L,A) = O(
√

T log d).

Proof. Consider A = (y1, . . . , yT ) ∈ ({−1, 1}d)T = A drawn from the distribution Π. For t =
1, . . . , T , we define µt as the conditional expectation of yt given the history y1, . . . , yt−1:

µt := EΠ[yt|y1, . . . , yt−1].

Note that µt is a (deterministic) function of the history ht−1 := (y1, . . . , yt−1). We construct
our learner’s strategy L = (ℓ1, . . . , ℓT ) simply by defining ℓt(ht−1) := argminx∈∆d

⟨x, µt⟩ for every
t = 1, . . . , T , where we break ties arbitrarily.

Given A = (y1, . . . , yT ) ∼ Π, our learner’s strategy L gives the corresponding x1, . . . , xT ∈ ∆d,
where

xt = ℓ(ht−1) = argmin
x∈∆d

⟨x, µt⟩ for every t = 1, . . . , T . (2)

The lemma is proved by the following calculation:

EA∼ΠR(L,A) = EΠ

[
T∑
t=1

⟨xt, yt⟩ − min
x∗∈∆d

T∑
t=1

⟨x∗, yt⟩

]

= E

[
max
x∗∈∆d

(
T∑
t=1

⟨xt, µt⟩ −
T∑
t=1

⟨x∗, yt⟩

)]

≤ E

[
max
x∗∈∆d

(
T∑
t=1

⟨x∗, µt⟩ −
T∑
t=1

⟨x∗, yt⟩

)]
(by (2))

≤ O(
√

T log d). (by Lemma 3)

The above proof of Lemma 2 uses the following concentration inequality.
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Lemma 3. Let Π be an arbitrary distribution of (y1, . . . , yT ) ∈ ([−1, 1]d)T . Define

µt := EΠ[yt|y1, . . . , yt−1].

Then

EY∼Π

[
max
x∈∆d

T∑
t=1

⟨x, µt − yt⟩

]
≤ O(

√
T log d).

This lemma can be proved based on the fact that zs :=
∑s

t=1(µt− yt) is a martingale. We omit
the detailed proof of this lemma since concentration inequalities are not the focus of this course.

Proof of Theorem 1. By Lemma 2, we have

max
Π∈∆A

min
L∈L

EA∼Π[R(L,A)] = O(
√

T log d).

Note that L and ∆A are both compact convex sets, and EA∼Π[R(L,A)] is an affine function of
L ∈ L and Π ∈ ∆A, so by the minimax theorem, we have

min
L∈L

max
Π∈∆A

EA∼Π[R(L,A)] = O(
√

T log d).

This means that there exists L ∈ L such that

max
A∈A

R(L,A) = O(
√

T log d).

Remark 1. While Theorem 1 proves the existence of a learner’s strategy L that achieves a good
regret guarantee, it does not explicitly tell us how to construct such a strategy. Later in the course we
will see a concrete strategy achieving the same O(

√
T log d) regret guarantee using the multiplicative

weights algorithm, which is a special case of mirror descent.

2 Generalizations of the Experts Problem: Online Linear Opti-
mization

In the classic experts problem shown in the previous section, in each round, the learner chooses an
action xt ∈ ∆d, whereas the adversary chooses an action yt ∈ {−1, 1}d. It is natural to consider
other choices of the two action spaces ∆d and {−1, 1}d. Such generalized experts problems obtained
from general action spaces are termed Online Linear Optimization (OLO) in the literature.

Specifically, an OLO problem is the following generalized experts problem defined by the
learner’s action set X ⊆ Rd and the adversary’s action set Y ⊆ Rd: in each round t = 1, . . . , T ,

1. learner chooses xt ∈ X;

2. adversary reveals yt ∈ Y ;

3. learner incurs loss ⟨xt, yt⟩.
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The regret of the learner after T rounds is defined analogously to (1):

R(x1,...,T , y1,...,T ) :=
T∑
t=1

⟨xt, yt⟩ − inf
x∗∈X

T∑
t=1

⟨x∗, yt⟩. (3)

Similarly to Theorem 1, we can prove regret bounds for OLOs. We summarize some important
examples in Table 1. These examples will become useful for our discussions about online calibration
and Blackwell’s approachability later in the course. In Table 1, we use B̄ℓ2(0, 1) to denote the closed
unit ℓ2-ball {v ∈ Rd : ∥v∥2 ≤ 1} and use B̄ℓ1(0, 1) to denote the closed unit ℓ1-ball {v ∈ Rd : ∥v∥1 ≤
1}.

Regret bounds for OLOs (including the ones in Table 1) can be proved in the same way as we
prove Theorem 1 in Section 1. In the following, we give a high-level explanation for how these
general regret bounds are proved.

Learner’s action space Adversary’s action space Regret bound

xt ∈ ∆d yt ∈ [−1, 1]d O(
√
T log d)

xt ∈ B̄ℓ2(0, 1) yt ∈ B̄ℓ2(0, 1) O(
√
T )

xt ∈ [−1, 1]d yt ∈ B̄ℓ1(0, 1) O(
√
Td)

Table 1: Regret bounds for Online Linear Optimization problems.

First, we note that our entire proof of Theorem 1 in Section 1 is still valid if we replace
yt ∈ {−1, 1}d with yt ∈ Y for an arbitrary finite subset Y ⊆ [−1, 1]d. Our analysis requires
S ⊆ [−1, 1]d because Lemma 3 requires yt ∈ [−1, 1]d. We need Y to be finite because in our proof
of Theorem 1, we apply the minimax theorem to distributions Π on Y T , and we would like Π to
be a compact convex set in a linear space with finite dimension. Our analysis does not need any
additional properties of Y beyond these two requirements.

Second, the finiteness assumption on Y can be removed, and the same O
√
T log d) regret bound

in Theorem 1 holds even if we allow each yt to be chosen arbitrarily from [−1, 1]d (first line of
Table 1), despite that [−1, 1]d is an infinite set. This is achieved by applying Theorem 1 to a finite
ε-cover Y of [−1, 1]d for a sufficiently small ε > 0.

Third, we can apply the same proof strategy to get regret bounds when the learner’s action
space X ∈ Rd and adversary’s action space Y ∈ Rd are general, as long as X is a compact convex
set and Y is bounded. The different regret bounds simply come from different variants of the
concentration inequality Lemma 3. For instance, the second regret bound in Table 1 comes from
the following concentration inequality:

Lemma 4. Let Π be an arbitrary distribution of (y1, . . . , yT ) ∈ (B̄ℓ2(0, 1))
T . Define

µt := EΠ[yt|y1, . . . , yt−1].

Then

EY∼Π

[
max

x∈B̄ℓ2
(0,1)

T∑
t=1

⟨x, µt − yt⟩

]
≤ O(

√
T ).
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