From Convex Analysis to Learning, Prediction, and Elicitation®
Lecture 4: No-Regret Online Learning

Lunjia Hu

In this lecture, we apply what we have learned about the minimax theorem to obtain a no-regret
algorithm for a famous online learning problem: experts problem, as well as its generalization to
Online Linear Optimization (OLO). The experts problem and OLO are a fundamental building
block for solving many other online learning problems that we will discuss later in the course (e.g.,
online calibration and Blackwell’s approachability).

1 The Classic Experts Problem

Here is the classic setup of the experts problem. As the learner, our goal is to learn from d experts,
labeled 1,...,d. Ineach round t = 1,...,T, our task is to choose a probability distribution x; € Ay
over the experts. After that, the loss incurred by each expert is revealed as a vector y; € {—1, 1}d,
where the i-th coordinate of y; is the loss incurred by expert ¢ in round ¢. The loss we incur in
round ¢ is (z¢,y:) € [—1,1].

Our goal is to minimize the regret R compared to the best distribution z* € Ay in hindsight:
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Clearly, the regret for T rounds is at most T'. Can we do substantially better than that and develop
a strategy that guarantees o(T') regret? Is that even possible?

The challenge in the experts problem is that the learner needs to choose the distribution x; € Ay
before 1 is revealed. Moreover, we do not make any assumptions on how the y;’s are chosen—we
assume that an adversary chooses 1, ...,yr, and we even assume that the adversary knows the
learner’s strategy. This is a common challenge in many online learning problems. At every round
t, the learner cannot see the outcome y; before taking an action or making a prediction. Therefore,
in order to achieve a low regret, the learner needs to learn from the previous outcomes y1,..., 1.

We will show, somewhat surprisingly, that it is possible to ensure O(y/Tlogd) regret in T
rounds. The idea will be to use the minimax theorem to switch the order of play. The intuition
is that if the adversary plays first and reveals y; or the distribution of y; before the learner has
to choose z¢, then it is straightforward to find the best response z; that minimizes the expected
regret.

To formally state the result, we need to formalize the strategy space of the learner and the
adversary. The learner’s strategy L consists of functions ¢4, ..., ¢, where each ¢; maps the history
hi—1 = (y1,...,Y—1) to some xy = li(hy—1) € Ay. The adversary’s strategy is simply A =
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(Y1, ... yr) € ({=1,1}9)T. The entire sequence x1,yi, ..., 27, yr is determined by L and A, where
Y1,---,yr are immediately given by A, and each x; is given by xy = £(hi—1) = ((y1,---,yt—1)). We
define

R(L,A) := R(xy,..7,91,..T)-

We use £ to denote the set of all possible learner’s strategies L = (¢1,...,¢r), and use A =
({=1,1})7 to denote the set of all possible adversary’s strategies.

Our main theorem shows that the learner has a strategy that guarantees O(y/T logd) regret
against any adversary:

Theorem 1. There exists a learner’s strategy L € L such that

max R(L, A) = O(y/T logd).
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As mentioned earlier, we prove Theorem (1| by considering an order-reversed game where the
adversary chooses a (randomized) strategy first, in which case it becomes easy for the learner to
achieve low expected regret:

Lemma 2. Let I1 be an arbitrary distribution over A. There exists a learner’s strategy L € L such

that
EsnR(L,A) = O(\/T logd).

Proof. Consider A = (y1,...,yr) € ({-1,1}¥)T = A drawn from the distribution II. For t =
1,...,T, we define y; as the conditional expectation of y; given the history yi,...,y:—1:

we = Enlydyr, - - - ye—1]-

Note that p; is a (deterministic) function of the history h;—1 := (y1,...,4—1). We construct
our learner’s strategy L = ({1,...,¢r) simply by defining ¢;(h;—1) := argmin, e (z, ) for every
t=1,...,T, where we break ties arbitrarily.

Given A = (y1,...,yr) ~ II, our learner’s strategy L gives the corresponding x1,...,xp € Ay,
where
x¢y = l(hy—1) = argmin(zx, yy) forevery t =1,...,T. (2)
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The lemma is proved by the following calculation:
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O]

The above proof of Lemma [2] uses the following concentration inequality.



Lemma 3. Let II be an arbitrary distribution of (yi,...,yr) € ([=1,1]9)T. Define

we = Enlydyr, - - o ye—1]-

Then
T
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< O(y/Tlogad).

This lemma can be proved based on the fact that zs := > 7, (4t — y¢) is a martingale. We omit
the detailed proof of this lemma since concentration inequalities are not the focus of this course.

Proof of Theorem ] By Lemma 2] we have

foax min Ea~n[R(L, 4)] = O(vT log d).

Note that £ and A4 are both compact convex sets, and Ea.n[R(L,A)] is an affine function of
L € £ and IT € A4, so by the minimax theorem, we have

min max Ea~n[R(L, A)] = O(v/Tlogd).

This means that there exists L € L such that
Iilaj(R(L,A) = O(\/Tlogd). O
€

Remark 1. While Theorem [1] proves the existence of a learner’s strategy L that achieves a good
regret guarantee, it does not explicitly tell us how to construct such a strategy. Later in the course we
will see a concrete strategy achieving the same O (/T log d) regret guarantee using the multiplicative
weights algorithm, which is a special case of mirror descent.

2 Generalizations of the Experts Problem: Online Linear Opti-
mization

In the classic experts problem shown in the previous section, in each round, the learner chooses an
action x; € Ay, whereas the adversary chooses an action y; € {—1,1}¢. It is natural to consider
other choices of the two action spaces Ay and {—1, 1}d. Such generalized experts problems obtained
from general action spaces are termed Online Linear Optimization (OLO) in the literature.
Specifically, an OLO problem is the following generalized experts problem defined by the
learner’s action set X C R% and the adversary’s action set ¥ C R%: in each round t = 1,...,T,

1. learner chooses z; € X;
2. adversary reveals y; € Y;

3. learner incurs loss (z¢, yt).



The regret of the learner after T rounds is defined analogously to :
T T
R(z1,..191,..1) = Z(%»?M - }}1& Z@*,yt)- (3)
t=1 Sl
Similarly to Theorem [I} we can prove regret bounds for OLOs. We summarize some important
examples in Table[ll These examples will become useful for our discussions about online calibration
and Blackwell’s approachability later in the course. In Table we use By, (0,1) to denote the closed
unit £o-ball {v € R?: |jv|l2 < 1} and use By, (0,1) to denote the closed unit ¢1-ball {v € R? : ||v||; <
1}.
Regret bounds for OLOs (including the ones in Table [1)) can be proved in the same way as we
prove Theorem [I] in Section In the following, we give a high-level explanation for how these
general regret bounds are proved.

Learner’s action space Adversary’s action space Regret bound

o€ A v L) O(/TTog )
Ty € Bﬁg (07 1) Yt € 552 (Ov 1) O(\/T)
ry € [—1,1]¢ yr € By, (0,1) O(VTd)

Table 1: Regret bounds for Online Linear Optimization problems.

First, we note that our entire proof of Theorem [I| in Section [I] is still valid if we replace
y € {—1,1}¢ with 3, € Y for an arbitrary finite subset ¥ C [~1,1]¢. Our analysis requires
S C [~1,1]% because Lemma [3| requires 3; € [—1,1]%. We need Y to be finite because in our proof
of Theorem [l we apply the minimax theorem to distributions IT on Y7, and we would like II to
be a compact convex set in a linear space with finite dimension. Our analysis does not need any
additional properties of Y beyond these two requirements.

Second, the finiteness assumption on Y can be removed, and the same O+/T log d) regret bound
in Theorem [1| holds even if we allow each g; to be chosen arbitrarily from [—1,1]¢ (first line of
Table , despite that [—1,1]¢ is an infinite set. This is achieved by applying Theorem [1|to a finite
e-cover Y of [—1,1]? for a sufficiently small € > 0.

Third, we can apply the same proof strategy to get regret bounds when the learner’s action
space X € R% and adversary’s action space Y € R? are general, as long as X is a compact convex
set and Y is bounded. The different regret bounds simply come from different variants of the
concentration inequality Lemma [3| For instance, the second regret bound in Table [I| comes from
the following concentration inequality:

Lemma 4. Let I1 be an arbitrary distribution of (y1,...,yr) € (B, (0,1))T. Define

pe = Enlyely, - ye1].

Then
T
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